MePhy & I-Gaia Day: Machine Learning in mechanics and physics
December 9, 2025.
An elastic body \(\Omega\) with a crack \(\Gamma\) under a given load.
Assumption : Non-linearities are confined close to the crack tip.
Question : Does the crack propagate?
\[ \sigma_{ij}(r, \theta) = \frac{\color{red}{K_I}}{\sqrt{2\pi r}} f_{ij}^{I}(\theta) + \frac{\color{red}{K_{II}}}{\sqrt{2\pi r}} f_{ij}^{II}(\theta) + \frac{\color{red}{K_{III}}}{\sqrt{2\pi r}} f_{ij}^{III}(\theta) + \mathcal{O}(1), \quad \color{gray}{\sigma_{ij}(r, \theta) \underset{r \to 0}{\to} \infty.} \]
There is a stress singularity at crack tip.
Denoted \(K_m\), they :
Propagation criteria rely on the SIFs \(K_m\), e.g.,
\(\quad \displaystyle \color{red}{K_I} \leq K_{Ic}\), or
\(\quad \displaystyle G = \frac{\color{red}{K_{I}}^2 + \color{red}{K_{II}}^2}{E'} + \frac{\color{red}{K_{III}}^2}{2 \mu} \leq G_c\).
Different methods are employed :
Dense polynomials, limited to few parameters, etc.
Colors: \(\color{green}{\text{Inputs (parameters)} \color{green}{\mathbf{p}}}, \color{blue}{\text{Coefficients } \color{blue}{\mathbf{c}}}, \color{red}{\text{Outputs } \color{red}{K_{m}}}\).
For a structure and load parameterized by \(\color{green}{\mathbf{p}}= [\color{green}{p_{1}}, \color{green}{p_{2}}, ..., \color{green}{p_{N}}]^{T}\), find the relationship \(\color{red}{K_{m}}(\color{green}{\mathbf{p}})\).
We look for a polynomial approximation of degree \(d\) (hyperparameter) \[ \color{red}{K_{m}}(\color{green}{\mathbf{p}}) \approx \color{red}{\widetilde{K}_{m}^{\color{blue}{\mathbf{c}}}}(\color{green}{\mathbf{p}}) = \sum_{i_1} \sum_{i_2} \cdot\cdot\cdot \sum_{i_N} \color{blue}{c_{i_1, i_2, ..., i_n}} \color{green}{p_{1}}^{i_1} \color{green}{p_{2}}^{i_2} ... \color{green}{p_{N}}^{i_P}. \] For \(N_{\mathrm{obs}}\) observations (\(\color{green}{\mathbf{p}}\), \(\color{red}{K_{m}}\)), the optimal coefficients \(\color{blue}{\mathbf{c}^*}\) minimizes \[ \color{blue}{\mathbf{c}^*} = \arg\min_{\color{blue}{\mathbf{c}}} \frac{1}{2 N_{\mathrm{obs}}} \sum_{\boldsymbol{p}} \left(\color{red}{\widetilde{K}_{m}^{\color{blue}{\mathbf{c}}}}(\color{green}{\mathbf{p}}) - \color{red}{K_{m}}(\color{green}{\mathbf{p}}) \right)^2 + \beta \color{blue}{\| \color{blue}{\mathbf{c}}\|_1} , \quad \color{gray}{\| \boldsymbol{c} \|_1 = \sum_n | c_n |,} \] where \(\beta\) is a hyperparameter. The L1-norm of the coefficients \(\color{blue}{\mathbf{c}}\) drives irrelevant coefficients to zero.
Replace \(\color{green}{\mathbf{p}}\) with \(\mathbf{s} = [\color{green}{p_{1}}, \color{green}{p_{2}}, ..., \color{green}{p_{N}}, f(\color{green}{p_{i}})]\).
\[ K_I = \sigma \sqrt{a} \color{red}{\hat{K}_I}\left(\color{green}{\frac{a}{b}}\right) , \quad \sigma = \frac{P}{b}. \]
\[\color{green}{\mathbf{p}}= \left[ \color{green}{\frac{a}{b}}, \exp\left(\color{green}{a/b}\right), \frac{1}{\sqrt{1-\color{green}{a/b}}} \right]\]
=== Model 1
Assessment :
- Hyperparameter beta : 3.83e+02
- Number of coefficients : 1
- R2 score : 0.000
LaTeX expression:
\hat{K}_{I}(a/b) =
+45.6
=== Model 2
Assessment :
- Hyperparameter beta : 1.02e+01
- Number of coefficients : 2
- R2 score : 0.967
LaTeX expression:
\hat{K}_{I}(a/b) =
-21.1
+17.9 \frac{1}{\sqrt{1-a/b}}^2
=== Model 3
Assessment :
- Hyperparameter beta : 5.11e-01
- Number of coefficients : 3
- R2 score : 0.997
LaTeX expression:
\hat{K}_{I}(a/b) =
+5.43
-14.4 \exp(a/b)^2
+22.9 \frac{1}{\sqrt{1-a/b}}^2=== Model 1
Assessment :
- Hyperparameter beta : 1.79e+03
- Number of coefficients : 1
- R2 score : 0.000
LaTeX expression:
\hat{K}_{I}(a/b) =
+45.6
=== Model 2
Assessment :
- Hyperparameter beta : 3.43e+00
- Number of coefficients : 2
- R2 score : 0.999
LaTeX expression:
\hat{K}_{I}(a/b) =
+3.75
+4.11 \frac{1}{\sqrt{1-a/b}}^3
=== Model 3
Assessment :
- Hyperparameter beta : 6.13e-01
- Number of coefficients : 3
- R2 score : 1.000
LaTeX expression:
\hat{K}_{I}(a/b) =
+5.32
-0.383 \exp(a/b)^3
+4.19 \frac{1}{\sqrt{1-a/b}}^3By G. Eliyahu-Yakir and P. Reis (EPFL)
The superposition principle (\(K_m = K_{m}^{\Omega} + K_{m}^{\dot{\Omega}}\)) and the Buckingham \(\Pi\) theorem give (\(\frac{L}{W}\) is fixed)
Elastic FEM simulations
| Model | \(N_{\mathrm{coeff}}\) | \(R^2\) |
|---|---|---|
| \(\displaystyle \hat{K}_{I}^{\Omega} = \exp\left( 2.77 + 2.72 \exp\left(\frac{a}{W}\right) - 0.986 \exp\left(\frac{Lc}{L}\right) \right)\) | 3 | 0.995 |
| \(\displaystyle \hat{K}_{II}^{\Omega} = 0\) | - | - |
| \(\displaystyle \hat{K}_{III}^{\Omega} = 0\) | - | |
| \(\displaystyle \hat{K}_{I}^{\dot{\Omega}} = \exp \left(8.25 + 3.25 \left(\frac{a}{W}\right)^2 - 3.9 \left(\frac{L_c}{L}\right)^2 \right)\) | 3 | 0.996 |
| \(\displaystyle \hat{K}_{II}^{\dot{\Omega}} = -5.75 -127 \left(\frac{a}{W}\right)^2 -394 \frac{a}{W} \left(1-\frac{Lc}{L}\right)\) | 3 | 0.989 |
| \(\displaystyle \hat{K}_{III}^{\dot{\Omega}} = 52.7 + 238 \left(\frac{a}{W}\right) \left(1-\frac{Lc}{L}\right) + 97.4 \left(\frac{a}{W}\right)^3 - 66.6 \left(\frac{L_c}{L}\right)^3\) | 4 | 0.995 |
The fracture mechanics problem is now fully analytical.
A problem of fracture can now be fully analytical facilitating
F. Loiseau, Y. Epongue Djeugoue, G. Eliyahu-Yakir, P. Reis, V. Lazarus.
Presentation
Ce travail est financé par l’Agence de l’Innovation de Défense – AID – via le Centre Interdisciplinaire d’Etudes pour la Défense et la Sécurité – CIEDS – (projects 2022 - FracAddi).
F. Loiseau – Revisiting Fracture Mechanics Handbooks with Sparse Regression – MePhy & I-Gaia Day