NewFrac Conference, FEUP Porto
IMSIA, ENSTA Paris, CNRS, EDF, Institut Polytechnique de Paris 91120 Palaiseau, France
May 9, 2024
Polymers (Fused Deposit Modelling)
Metals (Direct Energy Deposition)
Global objective
Modelling and simulating crack propagation in 3D-printed structures
We will not discuss
What do we need?
A small teaser (force loading !)
Instable propagation
Instable propagation + No equilibrium
During the simulation, we need to adapt the load to follow the equilibrium path!
Origins (arc-length methods)
Idea
A load factor \(\lambda\) with a control equation,
\[ f(\lambda, \boldsymbol{u}, ...) - \Delta \tau= 0, \]
where \(\Delta \tau\): step size of control quantity \(f\).
Systematic literature review1 \(\implies\) approx. 15 applications to phase-field fracture.
Control quantity | Energy release/Dissipation | Nodal displacement |
---|---|---|
Origin | Gutiérrez (2004) | De Borst (1987) |
Phase-field | May et al. (2016), Singh et al. (2016) | Wu (2018) |
Pros | Problem-independent | Model-independent |
Cons | Model-depend (dissipation), Control switch for elastic phase | A-priori choice of control nodes (problem-dependent) |
What can be done? A method independent with both problem and model.
With some constraints:
We consider a domain \(\Omega\) submitted to a controlled load:
\[ \begin{array}{ll} \forall \boldsymbol{x}\in \partial \Omega_{\boldsymbol{u}}, & \boldsymbol{u}(\boldsymbol{x}) = \lambda \boldsymbol{u}_{\mathrm{ctrl}}(\boldsymbol{x}) \\ \forall \boldsymbol{x}\in \partial \Omega_{\boldsymbol{t}}, & \boldsymbol{t}(\boldsymbol{x}) = \lambda \boldsymbol{t}_{\mathrm{ctrl}}(\boldsymbol{x}) \end{array} \] where \(\lambda\) is the load factor.
Control by Maximum Strain Increment (Chen & Schreyer, 1990)
\[ \max_{\boldsymbol{x}\in \Omega} \left( \frac{\boldsymbol{\varepsilon}(\boldsymbol{u}_{n-1})}{\| \boldsymbol{\varepsilon}(\boldsymbol{u}_{n-1}) \|} : \color{\red}{\Delta \boldsymbol{\varepsilon}(\boldsymbol{u})} \right) - \Delta \tau= 0, \]
where \(\Delta \tau\) is the step size.
The state of a domain \(\Omega\) is described by:
The state of the domain verifies \[ (\boldsymbol{u}, \alpha) = \arg\min_{\substack{\boldsymbol{u}^* \in \mathcal{U} \\ \alpha^* \in \mathcal{A}}} \mathcal{E}_{\mathrm{tot}} = \arg\min_{\substack{\boldsymbol{u}^* \in \mathcal{U} \\ \alpha^* \in \mathcal{A}}} \mathcal{E} (\boldsymbol{u}^*, \alpha^*) + \mathcal{D} (\alpha^*) + \mathcal{W}_{\mathrm{ext}} (\boldsymbol{u}^*) \]
where the energy functionals are,
\[ \begin{split} \mathcal{E} (\boldsymbol{u}, \alpha) &= \int_{\Omega} \frac{1}{2} a(\alpha) \boldsymbol{\varepsilon}(\boldsymbol{u}) : \mathbf{E}: \boldsymbol{\varepsilon}(\boldsymbol{u}) \,\mathrm{d}x, \\ \mathcal{D} (\alpha) &= \int_{\Omega} \frac{G_c}{c_w} \left( \frac{w(\alpha)}{\ell} + \ell \nabla \alpha \cdot \nabla \alpha \right) \,\mathrm{d}x, \\ \mathcal{W} (\boldsymbol{u}) &= \int_{\partial \Omega} \lambda \boldsymbol{t}_{\mathrm{ctrl}}\cdot \boldsymbol{u}^* \,\mathrm{d}x. \end{split} \]
The minimization problem can be solved by splitting the problem into two subproblems:
We need to introduce the solving of the control equation.
\[ \begin{split} \forall \boldsymbol{v}\in \mathcal{U}_0, \quad & \int_{\Omega} a(\alpha) \boldsymbol{\varepsilon}(\bar{\boldsymbol{u}}) : \mathbf{E}: \boldsymbol{\varepsilon}(\boldsymbol{v}) \,\mathrm{d}x + \int_{\partial \Omega} \boldsymbol{t}_{\mathrm{ctrl}}\cdot \boldsymbol{v}\,\mathrm{d}x = 0, \end{split} \]
Summary
While the displacement and crack phase are not converged
Not too intrusive
Other extensions (implemented but not investigated)
To application \(\implies\)
We applied a path-following method based on control by maximum strain increment.
In terms of robustness, mesh dependency has been observed on the crack path 1.
Yet, it proved to be:
Promising results, still room for improvement.
F. Loiseau, V. Lazarus
Query
Search on Scopus using the following query in April, 2024.
("load control" OR "path following" OR "path-following" OR "arc length" OR "arc-length" OR "continuation")
AND ("phase-field")
AND ("fracture")
Results
Notes