Modelling and simulating crack propagation in 3D-printed structures
MEALOR Days
IMSIA, ENSTA Paris, CNRS, EDF, Institut Polytechnique de Paris 91120 Palaiseau, France
November 7, 2024
Global objective
Modelling and simulating crack propagation in 3D-printed structures
We consider
and we want to determine
To solve this problem, we want to employ numerical methods.
The crack propagates when:
\[ G^*(\varphi) = G_c(\varphi) \implies \lambda = \sqrt{\frac{G_c(\varphi)}{G^*(\varphi)}}\]
in the direction that minimizes the load amplitude \(\lambda\)
\[ \varphi = \arg\min_{\varphi' \in [0, 2\pi]} \sqrt{\frac{G_c(\varphi')}{G^*(\varphi')}} \]
where \(G^*\) is obtained from Amestoy & Leblond (1992).
Weak anisotropy
Strong anisotropy
A general parameterization of \(G_c\) can be obtained using Fourier series1. \[ G_c(\varphi) = G_0 \left[ 1 + A_2 \cos(2 (\varphi - \theta_{2})) + ... + A_{2P} \cos(2P (\varphi - \theta_{2P})) \right]. \]
Plots of different \(G_c^{-1}(\phi)\)
The 2P-order model \[ G_c(\varphi) = G_0 \left[ 1 + A_2 \cos(2 (\varphi - \theta_{2})) + ... + A_{2P} \cos(2P (\varphi - \theta_{2P})) \right] \] can be written \[ G_c(\varphi) = G_0 \mathbf{A}_{2P} \bigotimes_{i=1}^{2P} \boldsymbol{n} , \quad \mathbf{A}_{2P} = \mathbf{I}_4 + \mathbf{1}^{\odot 2P-2} \odot \boldsymbol{H}_{2} + ... + \mathbf{1} \odot \boldsymbol{H}_{2P-2} + \mathbf{H}_{2P} \] where
The state of a domain \(\Omega\) is described by:
The state fields are governed by an energy minimization problem, \[ (\boldsymbol{u}, \alpha) = \arg\min_{\substack{\boldsymbol{u}' \in \mathcal{U} \\ \alpha' \in \mathcal{A}}} \ \underset{\text{elastic}}{\mathcal{E} (\boldsymbol{u}', \alpha')} + \underset{\text{dissipation}}{\mathcal{D} (\alpha')} - \underset{\text{external work}}{\mathcal{W}_{\mathrm{ext}} (\boldsymbol{u}')} \]
Isotropic fracture model
\[ \mathcal{D}(\alpha) = \frac{G_0}{c_w} \int_\Omega \frac{w(\alpha)}{\ell} + \ell \nabla \alpha \cdot \nabla \alpha \,\mathrm{d}x \]
Strongly anisotropic fracture models
Li & Maurini (2019), Gerasimov & De Lorenzis (2022), Rezaei et al. (2021) (in order)
\[ \begin{split} \mathcal{D}(\alpha) &= \frac{G_0}{c_w} \int_\Omega \frac{w(\alpha)}{\ell} + \ell^3 \nabla^2 \alpha : \mathbf{A} : \nabla^2 \alpha \,\mathrm{d}x \\ \mathcal{D}(\alpha) &= \frac{G_0}{c_w} \int_\Omega \frac{3}{b_w} \frac{w(\alpha)}{\ell} + \ell^3 \nabla \alpha \otimes \nabla \alpha : \mathbf{A} : \nabla \alpha \otimes \nabla \alpha \,\mathrm{d}x \\ \mathcal{D}(\alpha) &= \frac{G_c(\theta)}{c_w} \int_\Omega \frac{w(\alpha)}{\ell} + \ell \nabla \alpha \cdot \nabla \alpha \,\mathrm{d}x, \quad \theta = \arctan \left(- \frac{\nabla \alpha \cdot \boldsymbol{e}_2}{ \nabla \alpha \cdot \boldsymbol{e}_1} \right) - \frac{\pi}{2} \end{split} \]
Other anisotropic models: models with multiple order (Teichtmeister et al., 2017), multi-phase field models (Nguyen et al., 2017), etc.
We observe micro-zigzag on the crack path.
Fig. 15 of Gerasimov & De Lorenzis (2022)
The crack propagates when
\[ G^*(\varphi) = G_c(\varphi) \implies \lambda = \sqrt{\frac{G_c(\varphi)}{G^*(\varphi)}}\]
in the direction that minimizes the load amplitude \(\lambda\)
\[ \varphi = \arg\min_{\varphi' \in [0, 2\pi]} \sqrt{\frac{G_c(\varphi')}{G^*(\varphi')}}. \]
Should this minimization be local or global ?
Global minimizer
Note: The zig-zag amplitude reduces with crack increment size.
Local minimizer
Which solution is correct?
Experiments
Local minimizer
According to those experiments, the local minimizer seems to be valid one.
Suggestions
GMERR
Anisotropic phase-field fracture
Promising first (coarse) results !
F. Loiseau, V. Lazarus
flavien.loiseau@ensta-paris.fr
Next objective
More complex fracture case with anisotropic phase-field fracture