12th European Solid Mechanics Conference, Lyon, France
IMSIA, CNRS, EDF, ENSTA Paris,
Institut Polytechnique de Paris,
91120 Palaiseau, France
July 7, 2025
Modelling and simulating quasi-static crack propagation in 3D-printed structures
Metals (Direct Energy Deposition)
Polymers (Fused Deposit Modelling)
Model and simulate crack propagation in strongly anisotropic material using
Expected output of the model
Force-displacement curve and the crack path.
Load factor \(\lambda\)
Dimensionless parameter controlling the load amplitude.
Assumptions
2D problem (plane strain)
Isotropic elasticity (\(E = 1.9\) GPa, \(\nu = 0.34\))
Reference data (Corre & Lazarus, 2021; Zhai et al., 2025)
Experiments on 3D-printed polycarbonate specimens.
Straight crack, isotropic fracture toughness
Griffith (1921) defined the energy release rate \[ G = - \frac{\partial \mathcal{P}}{\partial a}. \] Griffith (1921) criterion states that the crack propagates when it reaches a critical value \[G = G_c.\] Having \(G = \lambda^2 \bar{G}\), the propagation occurs for the critical load factor \[\lambda_c = \sqrt{G_c/ \bar{G}}.\]
Kinked crack, isotropic fracture toughness
According to the Maximum Energy Release Rate (MERR) criterion, the kink angle is \[\varphi = \arg\max_{\varphi'} G^*(\varphi'),\] where \(G^*(\varphi)\) is the energy release rate accross a kink of angle \(\varphi\) (Amestoy & Leblond, 1992).
Kink angle \(\varphi\) and propagation threshold \(\lambda_c\) states that the kink angle \[ \varphi = \arg\min_{\varphi'} \lambda_c (\varphi'). \]
Kinked crack, anisotropic fracture toughness
To account for anisotropy fracture toughness, the critical load factor recasts as \[ \lambda_c (\varphi) = \sqrt{\frac{\color{red}{G_c(\varphi)}}{\bar{G}^*(\varphi)}}, \] and the MERR criterion remains \[ \varphi = \arg\min_{\varphi'} \lambda_c (\varphi). \] We choose a strongly anisotropic toughness \[ G_c (\varphi) = G_0 \left( 1 + \frac{\Delta G}{G_0} | \sin 2(\varphi - \theta_0) | \right). \]
Starting from an initial crack, the following procedure is repeated iteratively until structural failure:
Experiments
Simulations
Experiments
Simulations
Observations
I promised a bit too much … so we will focus on one specific model.
From the works of Focardi (2001) and Gerasimov & De Lorenzis (2022).
Similarly to Francfort & Marigo (1998), the problem recasts as an energy minimization problem \[ (\boldsymbol{u}, \Gamma) = \arg\min_{\boldsymbol{u}', \Gamma'} \mathcal{E}(\boldsymbol{u}', \Gamma'), \quad \mathcal{E}(\boldsymbol{u}, \Gamma) = \mathcal{P}(\boldsymbol{u}, \Gamma) + G_0 \int_{\Gamma} {\color{red}\phi (\boldsymbol{n})} \mathrm{d}S. \]
The function \({\color{red}\phi} : \mathbb{R}^d \to [0, +\infty[\) is a norm carrying the fracture anisotropy.
\[ (\boldsymbol{u}, \alpha) = \arg\min_{\boldsymbol{u}', \alpha'} \mathcal{E}(\boldsymbol{u}', \alpha'), \quad \mathcal{E}(\boldsymbol{u}, \Gamma) = \mathcal{P}(\boldsymbol{u}, \alpha) + G_0 \int_{\Omega} \frac{w(\alpha)}{\ell q} + \frac{\ell^{p-1}}{p} {\color{red}\phi^p(\nabla \alpha)} \,\mathrm{d}\boldsymbol{x}. \] where \(\alpha\) is the crack phase field (\(0=\)sane, \(1=\)cracked), \(\ell\) denotes the regularization length.
Gerasimov & De Lorenzis (2022) implemented and investigated this model in anti-plane shear.
OLD \[ G_c (\varphi) = G_0 \left( 1 + \frac{\Delta G}{G_0} {\color{red}| \sin 2(\varphi - \theta_0) |} \right) \]
NEW \[ G_c (\varphi) = G_0 \left( 1 + \frac{\Delta G}{G_0} {\color{red}\sin^2 2(\varphi - \theta_0)} \right) \]
Observations
F. Loiseau, V. Lazarus
flavien.loiseau@ensta.fr
Find this presentation at https://floiseau.github.io.
Recent publication
Loiseau, F., & Lazarus, V. (2025).
How to introduce an initial crack in phase field simulations
to accurately predict the linear elastic fracture propagation threshold?
JTCAM. https://doi.org/10.46298/jtcam.15198
F. Loiseau – Anisotropic fracture – ESMC25