Modelling and simulating quasi-static crack propagation in 3D-printed structures
GAMM PF 25 and Materials/Microstructure modelling
February 12, 2025
Global objective
Modelling and simulating quasi-static crack propagation in 3D-printed structures
We consider
and we want to determine
To solve this problem, we want to employ numerical methods.
State
The state of a domain \(\Omega\) is described by:
Griffith criterion (Griffith, 1920)
The crack propagates when: \[
\begin{array}{ccc}
G & = & G_c \\
% \downarrow & \quad & \downarrow \\
\text{elastic energy} & & \text{fracture energy} \\
\text{release} & & \text{required} \\
\end{array}
\]
Variational approach to fracture (Francfort & Marigo, 1998)
The state minimizes the potential energy \(\mathcal{P}\), \[
(\boldsymbol{u}, a)
= \arg\min_{\substack{\boldsymbol{u}' \in \mathcal{U} \\ a' \in \mathcal{A}}} \mathcal{P}(\boldsymbol{u}, a), \quad
\mathcal{P}(\boldsymbol{u}, a) =
\underset{\text{elastic}}{\mathcal{E} (\boldsymbol{u}', a')} +
\underset{\text{dissipation}}{\mathcal{D} (a')} -
\underset{\text{external work}}{\mathcal{W}_{\mathrm{ext}} (\boldsymbol{u}')}.
\] with \(\quad \displaystyle \mathcal{D} (a) = \int_{\Gamma(a)} G_c \, \mathrm{d}S\).
State
The state of a domain \(\Omega\) is described by:
Variational phase field model (Bourdin et al., 2000; Francfort & Marigo, 1998)
The state minimizes the regularized potential energy \(\mathcal{P}\), \[
(\boldsymbol{u}, \alpha)
= \arg\min_{\substack{\boldsymbol{u}' \in \mathcal{U} \\ \alpha' \in \mathcal{A}}} \mathcal{P}(\boldsymbol{u}, \alpha), \quad
\mathcal{P}(\boldsymbol{u}, \alpha) =
\underset{\text{elastic}}{\mathcal{E} (\boldsymbol{u}', \alpha')} +
\underset{\text{dissipation}}{\mathcal{D} (\alpha')} -
\underset{\text{external work}}{\mathcal{W}_{\mathrm{ext}} (\boldsymbol{u}')}.
\]
We consider the classic dissipation functional
\[ \mathcal{D}(\alpha) = \frac{G_0}{c_w} \int_{\Omega} \frac{w(\alpha)}{\ell} + \ell |\nabla \alpha|^2 \,\mathrm{d}x. \]
With continous field \(\alpha\) (Braides, 1998; Giacomini, 2005), \[ \mathcal{D}(\alpha) \underset{\ell \to 0}{\to} \int_{\Gamma} G_0 \, \mathrm{d}S. \]
However, with a discrete field \(\alpha\) (Negri, 1999, 2003), \[ \mathcal{D}(\alpha) \underset{\ell \to 0}{\to} \int_{\Gamma} G_0 \, \varphi (\theta) \, \mathrm{d}S. \]
Observation
The discretization induces artificial anisotropy: \(G_0 \, \phi (\theta) = G_c(\theta)\).
Polar plot of the mesh-induced anisotropy function \(\phi(\boldsymbol{n})\) for different triangulation (based on the calculations of Negri (2003)).
Objective
Preliminary analysis of the mesh influence on the crack path in variational phase-field models
Outline
\[H = 1 \qquad W = 8 H \qquad a_0 = H / 2 \qquad e = H / 4\]
Other parameters are given at the end of the presentation (see appendix in Section 5.1)
Structured mesh
Unstructured mesh
Remarks
Unstable crack propagation1
Stable crack propagation
Crack increments are more sensitive to the (local) discretization-induced anisotropy.
In this work, we:
F. Loiseau, E. Zembra, H. Henry, V. Lazarus
flavien.loiseau@ensta-paris.fr
Presentation
The work was supported by Agence de l’Innovation de Défense – AID – via Centre Interdisciplinaire d’Etudes pour la Défense et la Sécurité – CIEDS – (projects 2022 - FracAddi).