Influence of the mesh on the crack path in phase-field fracture simulations

GAMM PF 25 and Materials/Microstructure modelling

F. Loiseau flavien.loiseau@ensta-paris.fr IMSIA, ENSTA February 12, 2025

E. Zembra

edgar.zembra@polytechnique.edu PMC, Ecole Polytechnique H. Henry

herve.henry@polytechnique.edu PMC, Ecole Polytechnique

V. Lazarus

veronique.lazarus@ensta-paris.fr IMSIA, ENSTA

Crack propagation in 3D-printed structures

Duplex stainless steel by DED (Roucou et al., 2023)

Polycarbonate CT specimen by FDM (Zhai, 2023)

Global objective

Modelling and simulating quasi-static crack propagation in 3D-printed structures

The problem we want to solve

Fracture mechanics

We consider

- a domain Ω with a crack Γ_0 ,
- an elastic material (E, ν),
- a force and/or displacement load,

and we want to determine

- the crack path,
- the evolution of the displacement field.

To solve this problem, we want to employ numerical methods.

Linear Elastic Fracture Mechanics (LEFM)

State

The state of a domain Ω is described by:

- the displacement field $oldsymbol{u}(oldsymbol{x})$,
- the crack length *a*.

Linear Elastic Fracture Mechanics (LEFM)

State

The state of a domain Ω is described by:

- the displacement field $oldsymbol{u}(oldsymbol{x})$,
- the crack length *a*.

Griffith criterion (Griffith, 1920) The crack propagates when:

elastic energy release fracture energy required

Linear Elastic Fracture Mechanics (LEFM)

State

The state of a domain Ω is described by:

- the displacement field $\boldsymbol{u}(\boldsymbol{x})$,
- the crack length *a*.

Griffith criterion (Griffith, 1920) The crack propagates when:

—

release

 \boldsymbol{G}

 G_{c} elastic energy fracture energy required

Variational approach to fracture (Francfort & Marigo, 1998) The state minimizes the potential energy \mathcal{P} ,

$$(oldsymbol{u},a) = rgmin_{oldsymbol{u}'\in\mathcal{U}top a'\in\mathcal{A}}\mathcal{P}(oldsymbol{u},a), \quad \mathcal{P}(oldsymbol{u},a) = \mathcal{E}(oldsymbol{u}',a') + oldsymbol{\mathcal{D}}(a') - oldsymbol{\mathcal{W}}_{ ext{ext}}(oldsymbol{u}')\ ext{elastic} \quad ext{dissipation} \quad ext{external work}$$

with $\mathcal{D}(a) = \int_{\Gamma(a)} G_c \,\mathrm{d} S.$

Variational Phase-Field Model for fracture (VPFM)

State

The state of a domain Ω is described by:

- the displacement field $oldsymbol{u}(oldsymbol{x})$,
- the crack phase field $lpha(oldsymbol{x})$,
 - lpha=0
 ightarrow unbroken,
 - $lpha=1
 ightarrow {
 m broken}$,
 - $\alpha(t + \Delta t) \ge \alpha(t).$

Variational Phase-Field Model for fracture (VPFM)

State

The state of a domain Ω is described by:

- the displacement field $oldsymbol{u}(oldsymbol{x})$,
- the crack phase field $lpha(oldsymbol{x})$,
 - lpha=0
 ightarrow unbroken,
 - $\alpha = 1
 ightarrow {
 m broken}$,
 - $\alpha(t + \Delta t) \ge \alpha(t).$

Variational phase field model (Bourdin et al., 2000; Francfort & Marigo, 1998) The state minimizes the regularized potential energy \mathcal{P} ,

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

$\Gamma\text{-}{\rm convergence}$ of VPFM towards LEFM

We consider the classic dissipation functional

$$\mathcal{D}(lpha) = rac{G_0}{c_w} \int_\Omega rac{w(lpha)}{\ell} + \ell |
abla lpha|^2 \, \mathrm{d}x.$$

With **continous** field α (Braides, 1998; Giacomini, 2005),

$$\mathcal{D}(lpha) \mathop{
ightarrow}_{\ell
ightarrow 0} \int_{\Gamma} G_0 \, \mathrm{d} S.$$

$\Gamma\text{-}{\rm convergence}$ of VPFM towards LEFM

We consider the classic dissipation functional

$$\mathcal{D}(lpha) = rac{G_0}{c_w} \int_\Omega rac{w(lpha)}{\ell} + \ell |
abla lpha|^2 \mathrm{d}x.$$

With **continous** field α (Braides, 1998; Giacomini, 2005),

$$\mathcal{D}(lpha) \stackrel{
ightarrow}{
ightarrow} \int_{\Gamma} G_0 \, \mathrm{d} S.$$

However, with a **discrete** field α (Negri, 1999, 2003),

$$\mathcal{D}(lpha) extstyle \int_{\Gamma} G_0 \, arphi(heta) \, \mathrm{d} S.$$

Observation

The discretization induces **artificial anisotropy**: $G_0 \phi(\theta) = G_c(\theta)$.

Illustration of mesh-induced anisotropy

Negri (1999), Negri (2003)

Polar plot of the mesh-induced anisotropy function $\phi(n)$ for different triangulation (based on the calculations of Negri (2003)).

Numeric analysis : Mesh influence on crack path

Objective

Preliminary analysis of the mesh influence on the crack path in variational phase-field models

Outline

- Presentation of the benchmark proposed by H. Henry
- Comparison of crack path on structured and unstructured meshes for:
 - Instable propagation case
 - Stable propagation case

Benchmark: Eccentric Pure Shear (H. Henry)

Other parameters are given at the end of the presentation (see appendix in Section 5.1)

Benchmark: Expected results

Two types of meshes

Structured mesh

Unstructured mesh

Remarks

- Meshes have been coarsened for illustration purposes (h=H/12).
- Initial crack is one-element wide and lpha=1 on it (see preprint Loiseau & Lazarus (2025)).

Unstable propagation¹ – Structured mesh

Unstable propagation¹ – Unstructured mesh

Unstable propagation¹ – Struct vs Unstruct

Stable crack propagation

Change of load

Stable crack propagation

Coordinate y

Coordinate x

Conclusion

Discussion of the results

Unstable crack propagation¹

- Unstructured mesh : large bias which decreases with mesh refinement.
- Structured mesh : mesh only adds noise to the path.

Stable crack propagation

- Unstructured mesh : no convergence.
- Structured mesh : convergence but high noise.

Crack increments are more sensitive to the (local) discretization-induced anisotropy.

Summary

In this work, we:

- Propose a benchmark to assess the influence of the mesh on crack path.
- Encourage to extend mesh-sensitivity study to its structure (not only mesh size).
- Show that structured meshes severely bias the crack path (stable propagation).

Thank you for your attention !

F. Loiseau, E. Zembra, H. Henry, V. Lazarus

flavien.loiseau@ensta-paris.fr

Presentation

The work was supported by Agence de l'Innovation de Défense – AID – via Centre Interdisciplinaire d'Etudes pour la Défense et la Sécurité – CIEDS – (projects 2022 - FracAddi).

Appendices

Appendix : Parameters for the simulations

- 2D : plane stress.
- Phase-field model: AT1.
- Elastic parameters: $\lambda = \mu = 1Pa$.
- Fracture parameters: $G_c = 1$.
- Regularization length: $\ell=0.0625=H/16.$
- Mesh sizes: $h\in H/64, H/128, H/256.$
- Load $u_x=0$ and $u_y(x,t)=\pm(t+ an(\pi/180)*(H-x))$
 - Unstable : $\theta = 0$
 - Stable : $\theta = \pi/180$

References

References

- Bourdin, B., Francfort, G. A., & Marigo, J.-J. (2000). Numerical experiments in revisited brittle fracture. *Journal of the Mechanics and Physics of Solids*, 48(4), 797–826. https://doi.org/10.1016/S0022-5096(99)00028-9
- Braides, A. (1998). Approximation of Free-Discontinuity Problems (Vol. 1694). Springer. https://doi.org/10.1007/BFb0097344
- Francfort, G. A., & Marigo, J.-J. (1998). Revisiting brittle fracture as an energy minimization problem. *Journal of the Mechanics and Physics of Solids*, 46(8), 1319–1342. https://doi.org/10.1016/S0022-5096(98)00034-9
- Giacomini, A. (2005). Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures. *Calculus of Variations and Partial Differential Equations*, 22(2), 129–172. https://doi.org/10.1007/s00526-004-0269-6
- Griffith, A. A. (1920). The phenomena of rupture and flow in solids. *Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character*, 221(582-593), 163–198. https://doi.org/10.1098/rsta.1921.0006
- Loiseau, F., & Lazarus, V. (2025). *How to introduce an initial crack in phase field simulations to accurately predict the linear elastic fracture propagation threshold?* arXiv. https://doi.org/10.48550/arXiv.2502.03900
- Negri, M. (1999). The anisotropy introduced by the mesh in the finite element approximation of the mumford-shah functional. *Numerical Functional Analysis and Optimization*, *20*(9-10), 957–982. https://doi.org/10.1080/01630569908816934
- Negri, M. (2003). A finite element approximation of the Griffith's model in fracture mechanics. *Numerische Mathematik*, 95(4), 653–687. https://doi.org/10.1007/s00211-003-0456-y
- Roucou, D., Corre, T., Rolland, G., & Lazarus, V. (2023). Effect of the deposition direction on fracture propagation in a Duplex Stainless Steel manufactured by Directed Energy Deposition. *Materials Science and Engineering: A*, 878, 145176. https://doi.org/10.1016/ j.msea.2023.145176
- Zhai, X. (2023). Crack propagation in elastic media with anisotropic fracture toughness: Experiments and phase-field modeling [PhD thesis].