Formulation of anisotropic damage in quasi-brittle materials and structures based on discrete element simulations

Flavien Loiseau Supervised by R. Desmorat, C. Oliver-Leblond 12 December 2023 Ph.D. Defense

1.1

Usage of quasi-brittle materials

In civil engineering: Construction of structures

Quasi-brittle materials

Observations Modelling degradation Methodology

Virtual testing

Beam-particle mod Measurement Reference dataset

State model

Damage variabl Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Why study quasi-brittle materials?

- Guarantee the integrity of structures during their life cycle
- > Optimize our material usage
 - Cement ≈ 8% of CO2 emissions (Lehne & Preston, 2018)

We need to

- understand how quasi-brittle materials degrade,
- > model how the degradation impact on their behavior.

Macroscopic observation of the degradation (Terrien, 1980)

Virtual testing Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Q Observations

- > Linear elastic phase
- > Softening phase
- > Linear unloading
- > Permanent strain

B Assumption

> Neglecting permanent strain

Source of the mechanical degradation (Mac et al., 2021)

Quasi-brittle materials Observations Modelling degradation Methodology

Virtual testing

Beam-particle mode Measurement Reference dataset

State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

What happens?

Mechanical loading ↓ Micro-cracks ↓ Degradation of mechanical properties

X-ray microtomography on concrete degraded due to shrinkage (sample diagonal 30 mm)

Another macroscopic observation: Damage-induced anistropy (Berthaud, 1991)

Quasi-brittle materials Observations Modelling degradation Methodology

Virtual testing Beam-particle model Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Q Observation

Effective Young modulus *Ẽ_i* depends on the direction

Illustration in 2D

Virtual testing

Beam-particle mod Measurement Reference dataset

State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

How to model the degradation?

Virtual testing

Beam-particle mod Measurement Reference dataset

State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

How to model the degradation?

Fracture Mechanics

Linear Elastic FM (Griffith, 1921; Irwin, 1957) Non-Linear FM (Rice, 1968) Variational Approach (Francfort & Marigo, 1998)

Virtual testing

Beam-particle model Measurement Reference dataset

State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

How to model the degradation?

Fracture Mechanics

Linear Elastic FM(Griffith, 1921; Irwin, 1957)Non-Linear FM(Rice, 1968)Variational Approach(Francfort & Marigo, 1998)

Continuum Damage Mechanics

Damage in creep (Kachanov, 1958; Rabotnov, 1969) Effective stress (Lemaitre, 1971) Non-local damage (Pijaudier-Cabot & Bažant, 1987)

Virtual testing

Beam-particle mode Measurement Reference dataset

State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

How to model the degradation?

Fracture Mechanics

Linear Elastic FM(Griffith, 1921; Irwin, 1957)Non-Linear FM(Rice, 1968)Variational Approach(Francfort & Marigo, 1998)

Continuum Damage Mechanics

Damage in creep (Kachanov, 1958; Rabotnov, 1969) Effective stress (Lemaitre, 1971) Non-local damage (Pijaudier-Cabot & Bažant, 1987)

Discrete Models

Particle-based (DEM) Lattice-based Hybrid

(Cundall & Strack, 1979) (Hrennikoff, 1941) (D'Addetta et al., 2002)

Virtual testing Beam-particle model Measurement Reference dataset

State model Damage variable

Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Formulation of a damage model

Damage model

 $\mathcal{V} = \{\varepsilon, \mathbf{D}, ...\}$ $\boldsymbol{\sigma} = \widetilde{\mathbf{E}}(\mathbf{D}) : \varepsilon$ $\dot{\mathbf{D}} = ...$

where

- > D damage variable
- > $\widetilde{\mathbf{E}}$ effective elasticity tensor

Constraints

- > $\widetilde{E}(D)$ is positive definite
- > Positive dissipation

Homogenized \mathbf{E}_0 ϵ , D / ε $\widetilde{\mathbf{E}}(\mathbf{D})$

Methodology

Virtual testing

Beam-particle mode Measurement Reference dataset

State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Remarks on Continuum Damage Mechanics for concrete

Phenomenological models

> Isotropic

- (Mazars, 1984)
- (Lubliner et al., 1989)
- (Grassl & Jirásek, 2006)
- (Richard et al., 2010)

> Anisotropic

- (Murakami & Ohno, 1978)
- (Halm & Dragon, 1996, 1998)
- (Voyiadjis et al., 2008, 2022)
- (Desmorat et al., 2007; Desmorat, 2016)

Methodology

Virtual testing

Beam-particle mode Measurement Reference dataset

State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Remarks on Continuum Damage Mechanics for concrete

Phenomenological models

> Isotropic

- (Mazars, 1984)
- (Lubliner et al., 1989)
- (Grassl & Jirásek, 2006)
- (Richard et al., 2010)

> Anisotropic

- (Murakami & Ohno, 1978)
- (Halm & Dragon, 1996, 1998)
- (Voyiadjis et al., 2008, 2022)
- (Desmorat et al., 2007; Desmorat, 2016)

Micro-mechanics

- Homogenization of micro-cracked media
 - (Vakulenko & Kachanov, 1971)
 - (Kachanov, 1992)
 - (Ponte Castañeda & Willis, 1995)
 - (Cormery & Welemane, 2010)
 - (Dormieux & Kondo, 2016)
 - (Desmorat & Desmorat, 2016)

Limitations

Interactions between micro-cracks

Quasi-brittle materials Observations Modelling

degradation Methodology

Virtual testing

Beam-particle mode Measurement Reference dataset

State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Objectives

O Thesis objective

Formulate an anisotropic damage model for quasi-brittle materials

[] Main focus

- > Anisotropic damage
- > Elasticity-damage coupling
 - Even at high level of damage

C Secondary focus

> Damage evolution ?

Assumptions

- > Initial isotropy
- > 2D case
- > Micro-cracks closure neglected
 - No permanent strains
 - No stiffness recovery in compression

Quasi-brittle materials

Observations Modelling degradation Methodology

Virtual testing

Beam-particle model Measurement Reference dataset

State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Virtual testing for study of concrete **Principle**

Perform numerical experiment on a macro-element of the material using an accurate meso-scale model

(Wriggers & Moftah, 2006) FEM simulations of concrete with explicit aggregates

(Rinaldi & Lai, 2007) (Rinaldi, 2013) Disordered lattice simulations of heterogeneous quasi-brittle materials

Quasi-brittle materials

Observations Modelling degradation **Methodology**

Virtual testing

Beam-particle model Measurement Reference dataset

State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Virtual testing for study of concrete **Principle**

Perform numerical experiment on a macro-element of the material using an accurate meso-scale model

(Wriggers & Moftah, 2006) FEM simulations of concrete with explicit aggregates

(Rinaldi & Lai, 2007) (Rinaldi, 2013) Disordered lattice simulations of heterogeneous quasi-brittle materials

🗄 Advantages

- > Efficient (simpler, faster)
- > Versatile (different load cases)
- > Access to full mechanical fields
- > Reproducible

Limitations

- > Only as accurate as the model
- > Unreal environment conditions

Virtual testing

Beam-particle moo Measurement Reference dataset

State model

Damage variabl Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Methodology

Methodology

Virtual testing Beam-particle model

Measurement Reference datase

State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Methodology

1. Virtual testing

Use of an accurate material model to perform numerical experiments and constitute the reference dataset

Degraded specimen

Effective elasticity tensor

Methodology

Virtual testing

Measurement Reference dataset

State model

Damage variab Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Methodology

1. Virtual testing

Use of an accurate material model to perform numerical experiments and constitute the reference dataset

Degraded specimen

Effective elasticity tensor

2. State model

Determination of the coupling $\widetilde{\mathbf{E}}(D)$ between elasticity and damage from numerical experiments results

Quasi-brittle materials Observations

Modelling degradation Methodology

Virtual testing Beam-particle model

Measurement Reference datase

State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Methodology

1. Virtual testing

Use of an accurate material model to perform numerical experiments and constitute the reference dataset

Degraded specimen

Effective elasticity tensor

2. State model

Determination of the coupling $\widetilde{\mathbf{E}}(\mathbf{D})$ between elasticity and damage from numerical experiments results

10/41

$\sigma = \widetilde{\mathbf{E}}(\mathbf{D}) : \varepsilon \qquad \mathbf{D} \underbrace{ \begin{array}{c} & \widetilde{\mu} \\ \widetilde{\kappa} \\ \widetilde{\mathbf{d}}' \\ \widetilde{\mathbf{H}} \end{array}}_{\widetilde{\mathbf{H}}} \widetilde{\mathbf{E}}$

3. Evolution law

Analysis and determination of damage evolution $\dot{\mathbf{D}}$ during a mechanical loading

1. Virtual testing

Quasi-brittle materials Observations

Modelling degradation Methodology

Virtual testing

Beam-particle model Measurement Reference dataset

State model

Damage variable Shear modulus Harmonic part Application

Evolution law?

Presentation Limitations

Conclusion

The Service

Generate a dataset of effective elasticity tensors evolution by virtual testing

🗎 Outline

- > Describe the meso-scale (beam-particle) model
- > Measure the evolution of an effective elasticity tensor
- > Presentation of the generated reference dataset

Quasi-brittle materials Observations Modelling

Methodology

Virtual testing Beam-particle model Measurement Reference dataset

State model Damage variable

Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Beam-particle model (Vassaux et al., 2016)

On the basis of Herrmann and Roux (1990), Delaplace et al. (1996), D'Addetta et al. (2002), and Delaplace (2008)

Components

- > Rigid particles
 - random positions

Features

- > Heterogeneous
- > Explicit cracking
- > Accurate failure (Oliver-Leblond, 2019)

Description in pp. 46–51 🛛 🖾 Implementation: in-house code DEAP

Quasi-brittle materials Observations Modelling

Methodology

Beam-particle mode Measurement Reference dataset

State model

Damage variabl Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Beam-particle model (Vassaux et al., 2016)

On the basis of Herrmann and Roux (1990), Delaplace et al. (1996), D'Addetta et al. (2002), and Delaplace (2008)

Components

- > Rigid particles
 - random positions
- > Euler-Bernoulli beams

Features

- > Heterogeneous
- > Explicit cracking
- > Accurate failure (Oliver-Leblond, 2019)

🛛 Description in pp. 46–51 🛛 🖼 Implementation: in-house code DEAP

Quasi-brittle materials Observations

Modelling degradation Methodology

Virtual testing Beam-particle model Measurement Reference dataset

State model

Damage variabl Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Beam-particle model (Vassaux et al., 2016)

On the basis of Herrmann and Roux (1990), Delaplace et al. (1996), D'Addetta et al. (2002), and Delaplace (2008)

Components

- > Rigid particles
 - random positions
- > Euler-Bernoulli beams
- > Brittle beam failure
 - random thresholds
- Contact and friction (disabled)

Features

- > Heterogeneous
- > Explicit cracking
- > Accurate failure (Oliver-Leblond, 2019)

 \Box Description in pp. 46–51

Implementation: in-house code DEAP

Bitension loading - Periodic Boundary Conditions

Quasi-brittle materials Observations Modelling degradation Methodology

Virtual testing Beam-particle model Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Bitension loading - Periodic Boundary Conditions

Quasi-brittle materials Observations Modelling degradation Methodology

Virtual testing Beam-particle model Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Bitension loading - Periodic Boundary Conditions

Virtual testing Beam-particle model Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Bitension loading - Periodic Boundary Conditions

Quasi-brittle materials Observations Modelling degradation Methodology

Virtual testing Beam-particle model Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Virtual testing

Beam-particle moo Measurement Reference dataset

State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Procedure to measure effective elasticity tensors

Virtual testing Beam-particle mode Measurement Reference dataset

State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Procedure to measure effective elasticity tensors

Damaging loading

Virtual testing Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Procedure to measure effective elasticity tensors

Damaging loading

Measurement loads

Damaging

Measurement

loading

loads

E [GPa]

Virtual testing Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Procedure to measure effective elasticity tensors

33.5 5.62 -0.395.62 36.0 0.34 -0.390.34 28.0

Procedure to measure effective elasticity tensors

Application of the measurement procedure

Beam-particle moo Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Application of the measurement procedure

Beam-particle mod Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Virtual testing Beam-particle model Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Generation of the reference dataset

Constitution

Repeat the procedure for

- > 36 meso-structures,
 - random particle position,
 - random failure thresholds,

> 21 loadings,

• 100 load steps,

for a total of \approx 76 000 tensors.

Dataset on Recherche Data Gouv https://doi.org/10.57745/LYHM4W

🗍 Limitations (positive definiteness, decrease of the effective elastic properties) detailed in Ch. 4, Sec. 3 16/41

Virtual testing Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Conclusion on virtual testing

= Objective reminder

Generate a dataset of effective elasticity tensor evolution by virtual testing

1. Beam-particle model

2. Measurement

3. Reference dataset

2. State model

Quasi-brittle materials Observations Modelling degradation Methodology

Virtual testing Beam-particle mode Measurement Reference dataset

State model

Damage variable Shear modulus Harmonic part Application

Evolution law?

Conclusion

= Objective

Model the coupling between elasticity and anisotropic damage

📋 Outline

- 1. Quantify micro-cracking by defining a damage variable ${f D}$
- 2. Model the impact of (anisotropic) damage on the effective elasticity
 - 3. Assess the proposed model

Anisotropy: Distance to a symmetry class in 2D (Vianello, 1997; Antonelli et al., 2022)

Question What tensorial order for the damage variable?

Virtual testing Beam-particle mode Measurement Reference dataset

Quasi-brittle materials Observations Modelling degradation Methodology

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Anisotropy: Distance to a symmetry class in 2D (Vianello, 1997; Antonelli et al., 2022)

Question What tensorial order for the damage variable?

Relative distance to a symmetry stratum $\bar{\Sigma}$

State model Damage variable Shear modulus Harmonic part Application

Quasi-brittle materials

Virtual testing Beam-particle model Measurement Reference dataset

Modelling degradation Methodology Tool

Evolution law? Presentation Limitations

Anisotropy: Distance to a symmetry class in 2D (Vianello, 1997; Antonelli et al., 2022)

Question What tensorial order for the damage variable?

Tool Relative distance to a symmetry stratum $\bar{\Sigma}$

Illustration with the bitension loading

E [GPa] 0.93 -0.38 -0.50 -0.38 1.47 0.36

 $\begin{bmatrix} -0.38 & 1.47 & 0.36 \\ -0.50 & 0.36 & 3.66 \end{bmatrix}$

materials Observations Modelling degradation Methodology Virtual testing

Ouasi-brittle

Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Anisotropy: Distance to a symmetry class in 2D (Vianello, 1997; Antonelli et al., 2022) What tensorial order for the damage variable? Ouestion **Ouasi-brittle** materials Tool Relative distance to a symmetry stratum $\bar{\Sigma}$ Modelling Methodology Virtual testing Beam-particle mode Measuremer Illustration with the bitension loading Reference dataset Isotropy State model Damage variable $\mathbf{E}_{\rm Iso} = \begin{bmatrix} 1.68 & -0.91 & 0.00 \\ -0.91 & 1.68 & 0.00 \\ 0.00 & 0.00 & 2.59 \end{bmatrix}$ E [GPa] Application -0.38-0.5010.93 Evolution law? -0.38 1.47 0.36

-0.50

0.36

3.66

 $\Delta_{\bar{\Sigma}}(\mathbf{E}) = \min_{\mathbf{E}^* \subset \bar{\Sigma}} \frac{\|\mathbf{E} - \mathbf{E}^*\|}{\|\mathbf{E}\|}$

 $\Delta_{\rm Iso} = 0.427$

2.59

 $\in [0,1]$

Anisotropy: Distance to a symmetry class in 2D Vianello, 1997; Antonelli et al., 2022)									
Question	What tensorial order for the damage variable?								
Tool	Relative d	istance to	o a symi	metry stra	atum Σ	$\underbrace{\Delta_{\bar{\Sigma}}}_{\in [0]}$	$\underbrace{(\mathbf{E})}_{(1,1)} = \min_{\mathbf{E}^* \in \mathbf{E}}$	$\frac{\ \mathbf{E}-\mathbf{E}^*\ }{\ \mathbf{E}\ }$	
Illustration with the bitension loading Isotropy $\Delta_{Iso} =$, = 0.427	7		
		0.93	E [GPa] 0.93 -0.38 -0.38 1.47 -0.50 0.36	$ \begin{bmatrix} -0.50 \\ 0.36 \\ 3.66 \end{bmatrix} $	E _{Iso} =	$\begin{bmatrix} 1.68 \\ -0.91 \\ 0.00 \end{bmatrix}$	-0.91 1.68 0.00	$\begin{array}{c} 0.00 \\ 0.00 \\ 2.59 \end{array}$	
		$\begin{bmatrix} -0.38\\ -0.50 \end{bmatrix}$			Orthotropy		$\Delta_{\rm Ort} = 0.013$		
	and the second s				E _{Ort} =	0.92 -0.38 -0.48	-0.38 1.38 0.39	$ \begin{array}{c} -0.48 \\ 0.39 \\ 3.66 \end{array} $	

Virtual testing Beam-particle model Measuremen Reference dataset

Quasi-brittle materials

State model Damage variable

Evolution law?

Conclusion

19/41

materials

Modelling

Methodology

Measuremer

State model Damage variable

Evolution law?

Ouasi-brittle

materials

Modelling

Methodology Virtual testing

Beam-particle mode Measurement Reference dataset

State model

× Scalar damage

Ouasi-brittle

materials

Modelling

Methodology Virtual testing

Beam-particle mode Measurement Reference dataset

State model

Evolution law?

Conclusion

20/41

× Scalar damage

Ouasi-brittle

Virtual testing

State model

Evolution law?

Conclusion

Beam-particle mode Measurement Reference dataset

materials

Modelling

× Scalar damage

Ouasi-brittle

materials

Modelling

Methodology

Measuremer Reference dataset State model Damage variable

× Scalar damage

Ouasi-brittle

materials

Modelling

Methodology

Measuremen Reference dataset State model Damage variable

Application

Conclusion

✓ At least 2nd order tensor

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Beam-particle mode

Reference dataset State model Damage variable Shear modulus Harmonic part Application

Measuremer

Evolution law? Presentation Limitations

Conclusion

Harmonic decomposition in 2D

Applications to elasticity tensor: 3D Backus (1970), 2D Blinowski et al. (1996)

Elasticity tensor **E** in \mathbb{E} la(\mathbb{R}^2)

Harmonic decomposition in 2D

Applications to elasticity tensor: 3D Backus (1970), 2D Blinowski et al. (1996)

Quasi-brittle materials Observations Medialing degradation Methodoles Virtual testing Beam-particle mode Measurement Reference datates State model Damage variable Shear modulus Harmonic part

Evolution law? Presentation Limitations

Conclusion

Harmonic decomposition in 2D

Applications to elasticity tensor: 3D Backus (1970), 2D Blinowski et al. (1996)

materials Observations Modeling degenatation Methodology Virtual testing Beam-particle mode Measurement Reference dataset State model Danage variable

Ouasi-brittle

Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Harmonic decomposition in 2D

Applications to elasticity tensor: 3D Backus (1970), 2D Blinowski et al. (1996)

Principle of the model and definition of damage

(Oliver-Leblond et al., 2021) Knowing isotropic $\mathbf{E}_0 \leftrightarrow (\mu_0, \kappa_0, \mathbf{0}, \mathbf{0})$ and \mathbf{D} , we want to model

$$\widetilde{\mathbf{E}}(\mathbf{D}) = 2\widetilde{\mu}(\mathbf{D})\mathbf{J} + \widetilde{\kappa}(\mathbf{D})\mathbf{1} \otimes \mathbf{1} + \frac{1}{2}\left(\widetilde{\mathbf{d}}'(\mathbf{D}) \otimes \mathbf{1} + \mathbf{1} \otimes \widetilde{\mathbf{d}}'(\mathbf{D})\right) + \widetilde{\mathbf{H}}(\mathbf{D})$$

Quasi-brittle materials Observations Modelling degradation Methodology

Virtual testing Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Virtual testing Beam-particle mode Measurement Reference dataset State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Principle of the model and definition of damage

(Oliver-Leblond et al., 2021) Knowing isotropic $\mathbf{E}_0 \leftrightarrow (\mu_0, \kappa_0, \mathbf{0}, \mathbf{0})$ and \mathbf{D} , we want to model

$$\widetilde{\mathbf{E}}(\mathbf{D}) = 2\widetilde{\mu}(\mathbf{D})\mathbf{J} + \widetilde{\kappa}(\mathbf{D})\mathbf{1} \otimes \mathbf{1} + \frac{1}{2}\left(\widetilde{\mathbf{d}}'(\mathbf{D}) \otimes \mathbf{1} + \mathbf{1} \otimes \widetilde{\mathbf{d}}'(\mathbf{D})\right) + \widetilde{\mathbf{H}}(\mathbf{D})$$

How to define damage? Using the harmonic decomposition

$$\mu(\mathbf{E}) = \frac{1}{8} (2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d}) \qquad \mathbf{d}'(\mathbf{E}) = \mathbf{d} - \frac{1}{2} \operatorname{tr} \mathbf{d} \mathbf{1}$$
$$\kappa(\mathbf{E}) = \frac{1}{4} \operatorname{tr} \mathbf{d} \qquad \mathbf{H}(\mathbf{E}) = \mathbf{E} - \mathbf{Iso} - \mathbf{Dil}$$

Virtual testing Beam-particle mode Measurement Reference dataset State model Damage variable

Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Principle of the model and definition of damage

(Oliver-Leblond et al., 2021) Knowing isotropic $\mathbf{E}_0 \leftrightarrow (\mu_0, \kappa_0, \mathbf{0}, \mathbf{0})$ and \mathbf{D} , we want to model

 $\widetilde{\mathbf{E}}(\mathbf{D}) = 2\widetilde{\mu}(\mathbf{D})\mathbf{J} + \widetilde{\kappa}(\mathbf{D})\mathbf{1} \otimes \mathbf{1} + \frac{1}{2}\left(\widetilde{\mathbf{d}}'(\mathbf{D}) \otimes \mathbf{1} + \mathbf{1} \otimes \widetilde{\mathbf{d}}'(\mathbf{D})\right) + \widetilde{\mathbf{H}}(\mathbf{D})$

How to define damage? Using the harmonic decomposition

$$\mu(\mathbf{E}) = \frac{1}{8} (2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d}) \qquad \mathbf{d}'(\mathbf{E}) = \mathbf{d} - \frac{1}{2} \operatorname{tr} \mathbf{d} \mathbf{1}$$
$$\kappa(\mathbf{E}) = \frac{1}{4} \operatorname{tr} \mathbf{d} \qquad \mathbf{H}(\mathbf{E}) = \mathbf{E} - \mathbf{Iso} - \mathbf{Dil}$$

Damage variable

$$\mathbf{D} = \underbrace{(\mathbf{d}_0 - \mathbf{d}) \cdot \mathbf{d}_0^{-1}}_{\text{normalize } \mathbf{d}} = \mathbf{1} - \frac{1}{2\kappa_0} \mathbf{d} \iff \mathbf{d} = 2\kappa_0 (\mathbf{1} - \mathbf{D})$$

$$\mathbf{d}_0 = 2\kappa_0 \mathbf{1}$$

Bulk modulus and dilatation tensor as functions of damage

$$\mathbf{D} = \mathbf{1} - \frac{1}{2\kappa_0} \mathbf{d} \iff \mathbf{d} = 2\kappa_0 (\mathbf{1} - \mathbf{D})$$

Evolution law? Presentation Limitations

Quasi-brittle materials

Methodology Virtual testing Beam-particle mode Measurement Reference dataset State model Damage variable

Bulk modulus and dilatation tensor as functions of damage

$$\mathbf{D} = \mathbf{1} - \frac{1}{2\kappa_0} \mathbf{d} \iff \mathbf{d} = 2\kappa_0 (\mathbf{1} - \mathbf{D})$$

Expression of $\widetilde{\kappa}(\mathbf{D})$

$$\mathbf{D} \operatorname{def} \quad \frac{\frac{1}{4} \operatorname{tr} \bullet}{\longrightarrow} \kappa$$

Evolution law? Presentation Limitations

Quasi-brittle materials

Methodology Virtual testing Beam-particle mode

Measurement Reference dataset State model Damage variable

Virtual testing Beam-particle mode Measurement Reference dataset State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Bulk modulus and dilatation tensor as functions of damage

$$\mathbf{D} = \mathbf{1} - \frac{1}{2\kappa_0} \mathbf{d} \iff \mathbf{d} = 2\kappa_0 (\mathbf{1} - \mathbf{D})$$

Expression of $\widetilde{\kappa}(\mathbf{D})$

$$\mathbf{D} \operatorname{def} \quad \frac{\frac{1}{4} \operatorname{tr} \bullet}{\longrightarrow} \kappa$$

$$\tilde{\kappa}(\mathbf{D}) = \kappa_0 \left(1 - \frac{1}{2} \operatorname{tr} \mathbf{D} \right)$$

1

Virtual testing Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Bulk modulus and dilatation tensor as functions of damage

$$\mathbf{D} = \mathbf{1} - \frac{1}{2\kappa_0} \mathbf{d} \iff \mathbf{d} = 2\kappa_0 (\mathbf{1} - \mathbf{D})$$

Expression of $\widetilde{\kappa}(\mathbf{D})$

∜

 $\widetilde{\kappa}(\mathbf{D}) = \kappa_0 \left(1 - \frac{1}{2} \operatorname{tr} \mathbf{D} \right)$

Expression of $\widetilde{d}'(D)$

Virtual testing Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Bulk modulus and dilatation tensor as functions of damage

$$\mathbf{D} = \mathbf{1} - \frac{1}{2\kappa_0} \mathbf{d} \iff \mathbf{d} = 2\kappa_0 (\mathbf{1} - \mathbf{D})$$

Expression of $\widetilde{\kappa}(\mathbf{D})$

 $\widetilde{\kappa}(\mathbf{D}) = \kappa_0 \left(1 - \frac{1}{2} \operatorname{tr} \mathbf{D} \right)$

∜

Expression of $\widetilde{d}^\prime(D)$

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Beam-particle mode Measurement

Reference dataset State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Summary of the partial state model

Knowing isotropic $\mathbf{E}_0 \leftrightarrow (\mu_0, \kappa_0, \mathbf{0}, \mathbf{0})$ and \mathbf{D} ,

$$\widetilde{\mathbf{E}}(\mathbf{D}) = 2\widetilde{\mu}(\mathbf{D})\mathbf{J} + \widetilde{\kappa}(\mathbf{D})\mathbf{1} \otimes \mathbf{1} + \frac{1}{2}\left(\widetilde{\mathbf{d}}'(\mathbf{D}) \otimes \mathbf{1} + \mathbf{1} \otimes \widetilde{\mathbf{d}}'(\mathbf{D})\right) + \widetilde{\mathbf{H}}(\mathbf{D})$$

where decomposition $\mathbf{E} \mapsto (\mu, \kappa, \mathbf{d}', \mathbf{H})$ and damage definition $\mathbf{d} \mapsto \mathbf{D}$ give

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Summary of the partial state model

Knowing isotropic $\mathbf{E}_0 \leftrightarrow (\mu_0, \kappa_0, \mathbf{0}, \mathbf{0})$ and \mathbf{D} ,

$$\widetilde{\mathbf{E}}(\mathbf{D}) = 2\widetilde{\boldsymbol{\mu}}(\mathbf{D})\mathbf{J} + \widetilde{\boldsymbol{\kappa}}(\mathbf{D})\mathbf{1} \otimes \mathbf{1} + \frac{1}{2}\left(\widetilde{\mathbf{d}}'(\mathbf{D}) \otimes \mathbf{1} + \mathbf{1} \otimes \widetilde{\mathbf{d}}'(\mathbf{D})\right) + \widetilde{\mathbf{H}}(\mathbf{D})$$

where decomposition $\mathbf{E} \mapsto (\mu, \kappa, \mathbf{d}', \mathbf{H})$ and damage definition $\mathbf{d} \mapsto \mathbf{D}$ give

Questions How to model \bigcirc shear modulus $\tilde{\mu}(\mathbf{D})$? \bigcirc harmonic part $\tilde{\mathbf{H}}(\mathbf{D})$?

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Beam-particle model Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Modelling $\mu = \frac{1}{8} (2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d})$

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Beam-partife mode Measuremen Reference dataset State model Damage variable

Damage variab Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Modelling $\mu = \frac{1}{8} (2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d})$

Quasi-brittle
materials
Observations
degradation 🥒 🤈
Virtual testir
Beam-particle mo
Measurement
Reference datase
State model
Damage variable
Shear modulus
Harmonic part

Evolution law? Presentation Limitations

Conclusion

Modelling $\mu = \frac{1}{8} (2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d})$

 $D_{\mathbf{v}}$ such that $\operatorname{tr} \mathbf{v} = \operatorname{tr} \mathbf{v}_0 (1 - D_{\mathbf{v}})$

Evolution la Presentation Limitations

Conclusion

 $D_{\mathbf{v}}$ such that $\operatorname{tr} \mathbf{v} = \operatorname{tr} \mathbf{v}_0 (1 - D_{\mathbf{v}})$

Quasi-brittle materials Observations Modelling degratation Wirtual testing Beam-parties mode Measurement Reference datate State model Damage variable Shear modus

Evolution law? Presentation Limitations

Conclusion

 $D_{\mathbf{v}}$ such that $\operatorname{tr} \mathbf{v} = \operatorname{tr} \mathbf{v}_0 (1 - D_{\mathbf{v}})$

Conclusion

Modelling $\mu = \frac{1}{8} (2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d})$

 $D_{\mathbf{v}}$ such that $\operatorname{tr} \mathbf{v} = \operatorname{tr} \mathbf{v}_0 (1 - D_{\mathbf{v}})$

Assumptions

 $\widetilde{\mu}(\mathbf{D} = \mathbf{0}) = \mu_0$ $\widetilde{\mu}(\mathbf{D} = \mathbf{1}) = 0$ $\operatorname{tr} \mathbf{d} = \operatorname{tr} \mathbf{v}$

(Initial) (Full damage) (Early*, **D** ≈ 0)

EVOLUTION 1 Presentation Limitations

Conclusion

Modelling $\mu = \frac{1}{8} (2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d})$

 $D_{\mathbf{v}}$ such that $\operatorname{tr} \mathbf{v} = \operatorname{tr} \mathbf{v}_0 (1 - D_{\mathbf{v}})$

Assumptions

 $\widetilde{\mu}(\mathbf{D} = \mathbf{0}) = \mu_0$ $\widetilde{\mu}(\mathbf{D} = \mathbf{1}) = 0$ $\operatorname{tr} \mathbf{d} = \operatorname{tr} \mathbf{v}$

(Initial) (Full damage) (Early*, **D** ≈ 0)

We model $D_{\mathbf{v}}$ as linear combination of damage invariants

 $I_n(\mathbf{D}) = \operatorname{tr}(\mathbf{D}^n) = D_1^n + D_2^n$

* Early damage \implies Non-interacting cracks \implies Tot. sym. stiffness loss (Kachanov, 1992)

Conclusion

Modelling $\mu = \frac{1}{\alpha} (2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d})$

 $D_{\mathbf{v}}$ such that $\operatorname{tr} \mathbf{v} = \operatorname{tr} \mathbf{v}_0 (1 - D_{\mathbf{v}})$

Assumptions

 $\widetilde{\mu}(\mathbf{D}=\mathbf{0})=\mu_0$ $\widetilde{\mu}(\mathbf{D}=\mathbf{1})=0$ $tr \mathbf{d} = tr \mathbf{v}$

(Initial) (Full damage) (Early*, $\mathbf{D} \approx \mathbf{0}$)

We model $D_{\mathbf{v}}$ as linear combination of damage invariants

 $I_n(\mathbf{D}) = \operatorname{tr}(\mathbf{D}^n) = D_1^n + D_2^n$

 $d \longrightarrow \operatorname{tr} d \longrightarrow \mu$ **D** - $D_{\mathbf{v}_{0.5}}$

0.01.00.5

1.0

with 2 invariants: $D_{\mathbf{v}}^{\mathrm{m}} = c_1 I_1(\mathbf{D}) + c_2 I_2(\mathbf{D})$

* Early damage \implies Non-interacting cracks \implies Tot. sym. stiffness loss (Kachanov, 1992)

1.0

D١

0.5

Evolution la Presentation Limitations

Conclusion

Modelling $\mu = \frac{1}{8} (2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d})$

 $D_{\mathbf{v}}$ such that $\operatorname{tr} \mathbf{v} = \operatorname{tr} \mathbf{v}_0 (1 - D_{\mathbf{v}})$

Assumptions

 $\widetilde{\mu}(\mathbf{D} = \mathbf{0}) = \mu_0$ $\widetilde{\mu}(\mathbf{D} = \mathbf{1}) = 0$ $\operatorname{tr} \mathbf{d} = \operatorname{tr} \mathbf{v}$

(Initial) (Full damage) (Early*, **D** ≈ 0)

We model $D_{\mathbf{v}}$ as linear combination of damage invariants

 $I_n(\mathbf{D}) = \operatorname{tr}(\mathbf{D}^n) = D_1^n + D_2^n$

with 2 invariants: $D_{\mathbf{v}}^{m} = c_{1}I_{1}(\mathbf{D}) + c_{2}I_{2}(\mathbf{D}) \implies c_{1} = \frac{\kappa_{0}}{2\mu_{0} + \kappa_{0}}, c_{2} = \frac{1}{2} - c_{1}.$

* Early damage \implies Non-interacting cracks \implies Tot. sym. stiffness loss (Kachanov, 1992)

Evolution la Presentation Limitations

Conclusion

Modelling $\mu = \frac{1}{8} (2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d})$

 $D_{\mathbf{v}}$ such that $\operatorname{tr} \mathbf{v} = \operatorname{tr} \mathbf{v}_0 (1 - D_{\mathbf{v}})$

Assumptions

 $\widetilde{\mu}(\mathbf{D} = \mathbf{0}) = \mu_0$ $\widetilde{\mu}(\mathbf{D} = \mathbf{1}) = 0$ $\operatorname{tr} \mathbf{d} = \operatorname{tr} \mathbf{v}$

(Initial) (Full damage) (Early*, **D** ≈ 0)

We model $D_{\mathbf{v}}$ as linear combination of damage invariants

 $I_n(\mathbf{D}) = \operatorname{tr}(\mathbf{D}^n) = D_1^n + D_2^n$

with 2 invariants: $D_{\mathbf{v}}^{m} = c_{1}I_{1}(\mathbf{D}) + c_{2}I_{2}(\mathbf{D}) \implies c_{1} = \frac{\kappa_{0}}{2\mu_{0} + \kappa_{0}}, c_{2} = \frac{1}{2} - c_{1}.$

* Early damage \implies Non-interacting cracks \implies Tot. sym. stiffness loss (Kachanov, 1992)
Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Beam-particle mod Measurement Reference dataset State model Damage variable

Damage variat Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Summary of the (still) partial state model

Knowing isotropic $\mathbf{E}_0 \leftrightarrow (\mu_0, \kappa_0, \mathbf{0}, \mathbf{0})$ and \mathbf{D} ,

$$\widetilde{\mathbf{E}}(\mathbf{D}) = 2\widetilde{\boldsymbol{\mu}}(\mathbf{D})\mathbf{J} + \widetilde{\boldsymbol{\kappa}}(\mathbf{D})\mathbf{1}_2 \otimes \mathbf{1}_2 + \frac{1}{2}\left(\widetilde{\mathbf{d}}'(\mathbf{D}) \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \widetilde{\mathbf{d}}'(\mathbf{D})\right) + \widetilde{\mathbf{H}}(\mathbf{D})$$

where the invariants and covariants models are

Questions How to model \heartsuit shear modulus $\tilde{\mu}(\mathbf{D})$? \bigcirc harmonic part $\tilde{\mathbf{H}}(\mathbf{D})$?

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Measurement Reference dataset State model Damage variable

Damage variab Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Summary of the (still) partial state model

Knowing isotropic $\mathbf{E}_0 \leftrightarrow (\mu_0, \kappa_0, \mathbf{0}, \mathbf{0})$ and \mathbf{D} ,

$$\widetilde{\mathbf{E}}(\mathbf{D}) = 2\widetilde{\mu}(\mathbf{D})\mathbf{J} + \widetilde{\kappa}(\mathbf{D})\mathbf{1}_2 \otimes \mathbf{1}_2 + \frac{1}{2}\left(\widetilde{\mathbf{d}}'(\mathbf{D}) \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \widetilde{\mathbf{d}}'(\mathbf{D})\right) + \widetilde{\mathbf{H}}(\mathbf{D})$$

where the invariants and covariants models are

Questions How to model \heartsuit shear modulus $\tilde{\mu}(\mathbf{D})$? \bigcirc harmonic part $\tilde{\mathbf{H}}(\mathbf{D})$?

materials Observations Modelling degradation Methodology Virtual testing Beam partiet model Beam partiet model Measurement Reference dataset State model Damage varialse Stear module Harmonic part Application Evolution law?

Ouasi-brittle

Presentation Limitations

Conclusion

Modelling the harmonic part H

Parametrization based on Vannucci (2005) and Desmorat and Desmorat (2015)

How to parametrize the harmonic part?

Orthotropy
$$\implies$$
 $\mathbf{H} = \|\mathbf{H}\| \left(\pm \frac{\mathbf{d}' \ast \mathbf{d}'}{\|\mathbf{d}' \ast \mathbf{d}'\|} \right)$

where $\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - \frac{1}{2}(\mathbf{d}':\mathbf{d}')\mathbf{J}$.

Ouasi-brittle

Modelling the harmonic part H

Parametrization based on Vannucci (2005) and Desmorat and Desmorat (2015)

How to parametrize the harmonic part?

Orthotropy
$$\implies$$
 $\mathbf{H} = \|\mathbf{H}\| \left(\pm \frac{\mathbf{d}' \ast \mathbf{d}'}{\|\mathbf{d}' \ast \mathbf{d}'\|} \right)$

where
$$\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - \frac{1}{2}(\mathbf{d}':\mathbf{d}')\mathbf{J}$$
.

- \bigcirc Model orientation (±)?
- O Model norm $H(\mathbf{D}) = ||\mathbf{H}||$?

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Beam-partiele model Measurement Reference databet State modell Damage värlafe Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Modelling the harmonic part ${\bf H}$

Parametrization based on Vannucci (2005) and Desmorat and Desmorat (2015)

How to parametrize the harmonic part?

Orthotropy
$$\implies$$
 H = $\|\mathbf{H}\| \left(\pm \frac{\mathbf{d}' \ast \mathbf{d}'}{\|\mathbf{d}' \ast \mathbf{d}'\|} \right)$

where $\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - \frac{1}{2} (\mathbf{d}' : \mathbf{d}') \mathbf{J}$.

- \bigcirc Model orientation (±)?
- O Model norm $H(\mathbf{D}) = ||\mathbf{H}||$?

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Beam-partielt mode Measurement Reference databet State model Damage vydraßle Shdar modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Modelling the harmonic part H

Parametrization based on Vannucci (2005) and Desmorat and Desmorat (2015)

How to parametrize the harmonic part?

Orthotropy
$$\implies$$
 $\mathbf{H} = \|\mathbf{H}\| \left(\pm \frac{\mathbf{d}' \ast \mathbf{d}'}{\|\mathbf{d}' \ast \mathbf{d}'\|} \right)$

where $\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - \frac{1}{2} (\mathbf{d}' : \mathbf{d}') \mathbf{J}$.

- \bigcirc Model orientation (±)?
- O Model norm $H(\mathbf{D}) = ||\mathbf{H}||$?

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Beam-partief modi Measurement Reference dataet State modula Damage vyklakje Sthear modula

Evolution law? Presentation Limitations

Conclusion

Modelling the harmonic part ${\bf H}$

Parametrization based on Vannucci (2005) and Desmorat and Desmorat (2015)

How to parametrize the harmonic part?

Orthotropy
$$\implies$$
 $\mathbf{H} = \|\mathbf{H}\| \left(\pm \frac{\mathbf{d}' * \mathbf{d}'}{\|\mathbf{d}' * \mathbf{d}'\|} \right)$

where $\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - \frac{1}{2} (\mathbf{d}' : \mathbf{d}') \mathbf{J}$.

- \bigcirc Model orientation (±)?
- O Model norm $H(\mathbf{D}) = ||\mathbf{H}||$?

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Beam-partief modi Measurement Reference dataet State modula Damage vyklakje Sthear modula

Application Evolution law? Presentation Limitations

Conclusion

Modelling the harmonic part ${\bf H}$

Parametrization based on Vannucci (2005) and Desmorat and Desmorat (2015)

Orthotropy
$$\implies$$
 $\mathbf{H} = \|\mathbf{H}\| \left(+ \frac{\mathbf{d}' * \mathbf{d}'}{\|\mathbf{d}' * \mathbf{d}'\|} \right)$

where $\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - \frac{1}{2} (\mathbf{d}' : \mathbf{d}') \mathbf{J}$.

- Model orientation (\pm) ?
- O Model norm $H(\mathbf{D}) = ||\mathbf{H}||$?

Modelling the harmonic part H

Norm modelling H^m : $\mathbf{D} \mapsto H^m(\mathbf{D}) \approx ||\mathbf{H}||$?

Quasi-brittle materials Observations Modelling degradation

Virtual testing

Beam-particle model Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application Evolution law?

Presentation Limitations

Conclusion

Ouasi-brittle materials Methodology Virtual testing Beam-particle mode Measuremen Reference dataset State model Damage variable Shear modulu Harmonic part Evolution law?

EVOLUTION Presentation Limitations

Conclusion

Modelling the harmonic part H

Norm modelling H^m : $\mathbf{D} \mapsto H^m(\mathbf{D}) \approx \|\mathbf{H}\|$?

Invariants

 $I_1(\mathbf{D}) = \operatorname{tr}(\mathbf{D}) \quad I_2(\mathbf{D}') = \mathbf{D}' : \mathbf{D}'$

Quasi-brittle materials Observations Modeling degradation Wethodology Virtual testing Beam-partice model Measurement Reference datatet State model Damage virials State model Damage virials State model Harmonic pan Application

Evolution law? Presentation Limitations

Conclusion

Modelling the harmonic part H

Norm modelling H^m : $\mathbf{D} \mapsto H^m(\mathbf{D}) \approx \|\mathbf{H}\|$?

Invariants

 $I_1(\mathbf{D}) = \operatorname{tr}(\mathbf{D}) \quad I_2(\mathbf{D}') = \mathbf{D}' : \mathbf{D}'$

Quasi-britle materials Observations Modeling degradation Methodology Virtual testing Beam-parties mode Measurement Reference datates State model Damage variable Shear modulus

Harmonic part Application Evolution Jaw? Presentation

Conclusion

Modelling the harmonic part H

Norm modelling H^m : $\mathbf{D} \mapsto H^m(\mathbf{D}) \approx ||\mathbf{H}||$?

Invariants

 $I_1(\mathbf{D}) = \operatorname{tr}(\mathbf{D}) \quad I_2(\mathbf{D}') = \mathbf{D}' : \mathbf{D}'$

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing

Beam-particle mode Measurement Reference dataset State model

Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Modelling the harmonic part H

Norm modelling H^m : $\mathbf{D} \mapsto H^m(\mathbf{D}) \approx \|\mathbf{H}\|$?

Invariants

 $I_1(\mathbf{D}) = \operatorname{tr}(\mathbf{D}) \quad I_2(\mathbf{D}') = \mathbf{D}' : \mathbf{D}'$

Assumptions

 $H^{\mathrm{m}}(\mathbf{D} = \mathbf{0}) = \mathbf{0}$ (Initial isotropy) $H^{\mathrm{m}}(\mathbf{D} = \mathbf{1}) = \mathbf{0}$ (Fully damaged)

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Beam-partiele mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application Evolution law? Presentation Limitations

Conclusion

Modelling the harmonic part H

Norm modelling H^m : $\mathbf{D} \mapsto H^m(\mathbf{D}) \approx \|\mathbf{H}\|$?

Invariants

 $I_1(\mathbf{D}) = \operatorname{tr}(\mathbf{D}) \quad I_2(\mathbf{D}') = \mathbf{D}' : \mathbf{D}'$

Assumptions

 $H^{m}(\mathbf{D} = \mathbf{0}) = \mathbf{0} \quad \text{(Initial isotropy)}$ $H^{m}(\mathbf{D} = \mathbf{1}) = \mathbf{0} \quad \text{(Fully damaged)}$

Model Polynomial of invariants

$$H^{\mathrm{m}}(\mathbf{D}) = \sum_{n,m} c_{n,m} I_1^n(\mathbf{D}) \cdot I_2^m(\mathbf{D}')$$

Quasi-brittle materials Observations // Modelling degradation Methodology Virtual testing Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application Evolution law? Presentation Limitations

Conclusion

Modelling the harmonic part H

Norm modelling H^m : $\mathbf{D} \mapsto H^m(\mathbf{D}) \approx \|\mathbf{H}\|$?

Invariants

 $I_1(\mathbf{D}) = \operatorname{tr}(\mathbf{D}) \quad I_2(\mathbf{D}') = \mathbf{D}' : \mathbf{D}'$

Assumptions

$$\begin{split} H^m(\mathbf{D} = \mathbf{0}) &= \mathbf{0} \qquad \text{(Initial isotropy)} \\ H^m(\mathbf{D} = \mathbf{1}) &= \mathbf{0} \qquad \text{(Fully damaged)} \end{split}$$

Model Polynomial of invariants

$$H^{\mathbf{m}}(\mathbf{D}) = \sum_{n,m} c_{n,m} I_1^n(\mathbf{D}) \cdot I_2^m(\mathbf{D}')$$

Sparse regression $(r^2 \approx 0.79) \implies H^m(\mathbf{D}) = 18.8 \cdot 10^9 \cdot I_1^4(\mathbf{D}) \cdot I_2(\mathbf{D}')$

Quasi-brittle materials Observations Modelling degradation Methodology

Virtual testing

Reference dataset

State model Damage variable Shear modulus Harmonic part Application **Evolution law?** Presentation

Conclusion

Summary of the state model Knowing isotropic $E_0 \leftrightarrow (\mu_0, \kappa_0, \mathbf{0}, \mathbf{0})$ and \mathbf{D} ,

$$\widetilde{\mathbf{E}}(\mathbf{D}) = 2\widetilde{\mu}(\mathbf{D})\mathbf{J} + \widetilde{\kappa}(\mathbf{D})\mathbf{1} \otimes \mathbf{1} + \frac{1}{2}\left(\widetilde{\mathbf{d}}'(\mathbf{D}) \otimes \mathbf{1} + \mathbf{1} \otimes \widetilde{\mathbf{d}}'(\mathbf{D})\right) + \widetilde{\mathbf{H}}(\mathbf{D})$$

where the invariants and covariants models are

 $\widetilde{\mu}(\mathbf{D}) = \mu_0 - \frac{\kappa_0}{4} (\operatorname{tr} \mathbf{D}) + \frac{\kappa_0 - 2\mu_0}{4} (\mathbf{D} : \mathbf{D}) \qquad \qquad \widetilde{\mathbf{d}}'(\mathbf{D}) = -2\kappa_0 \mathbf{D}'$ $\widetilde{\kappa}(\mathbf{D}) = \kappa_0 \left(1 - \frac{1}{2} \operatorname{tr} \mathbf{D} \right) \qquad \qquad \qquad \widetilde{\mathbf{H}}(\mathbf{D}) = h (\operatorname{tr} \mathbf{D})^4 \mathbf{D}' * \mathbf{D}'$

with $\mathbf{D}'*\mathbf{D}'=\mathbf{D}'\otimes\mathbf{D}'-\frac{1}{2}(\mathbf{D}':\mathbf{D}')\mathbf{J}$

Remarks

- > $\widetilde{\kappa}(\mathbf{D})$ and $\widetilde{\mathbf{d}}'(\mathbf{D})$ are exact
- > Parameters: μ_0 , κ_0 and h

Reconstruction of stress σ from (exact) damage

Observations Modelling degradation Methodology

Virtual testing Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic pan Application Evolution law?

Presentation / Limitations

Conclusion

Reconstruction of stress σ from (exact) damage

Application

Reconstruction of stress $\boldsymbol{\sigma}$ from (exact) damage

Quasi-brittle materials

Modelling degradation Methodology

Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation

Conclusion

Reconstruction of stress $\boldsymbol{\sigma}$ from (exact) damage

Quasi-brittle materials

Virtual testing Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Modelling

materials

Measureme

Shear modul

Application

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Beam-particle mode Measurement

State model Damage variable Shear modulus Harmonic part Application Evolution law? Presentation Limitations Conclusion

Conclusion on the state model

Proposed coupling (Loiseau et al., 2023)

$$\widetilde{\mathbf{E}}(\mathbf{D}) = 2\widetilde{\mu}(\mathbf{D})\mathbf{J} + \widetilde{\kappa}(\mathbf{D})\mathbf{1} \otimes \mathbf{1} + \frac{1}{2}\left(\widetilde{\mathbf{d}}'(\mathbf{D}) \otimes \mathbf{1} + \mathbf{1} \otimes \widetilde{\mathbf{d}}'(\mathbf{D})\right) + \widetilde{\mathbf{H}}(\mathbf{D})$$

where

$$\widetilde{\mu}(\mathbf{D}) = \mu_0 - \frac{\kappa_0}{4} (\operatorname{tr} \mathbf{D}) + \frac{\kappa_0 - 2\mu_0}{4} (\mathbf{D} : \mathbf{D}) \qquad \widetilde{\mathbf{d}}'(\mathbf{D}) = -2\kappa_0 \mathbf{D}'$$
$$\widetilde{\kappa}(\mathbf{D}) = \kappa_0 \left(1 - \frac{1}{2} \operatorname{tr} \mathbf{D} \right) \qquad \widetilde{\mathbf{H}}(\mathbf{D}) = h (\operatorname{tr} \mathbf{D})^4 \mathbf{D}' * \mathbf{D}'$$

Tools

- > Distance to symmetry classes
 - Justify symmetry assumptions
- > Sparse regression
 - Simplify a generic model

> Harmonic decomposition

• Split the modelling into easier and independent modelling problems

3. Evolution law?

Quasi-brittle materials Observations Modelling degradation Methodology

Virtual testing

Beam-particle mod Measurement Reference dataset

State mode

Damage variab Shear modulus Harmonic part Application

Evolution law? Presentation Limitations

Conclusion

Objective

Describe the evolution of damage during a mechanical loading

 $\dot{\mathbf{D}} = \begin{cases} 0 & \text{if } f < 0 \text{ or } \dot{f} < 0, \\ ? & \text{otherwise.} \end{cases} \qquad f = f(\varepsilon, \mathbf{D}) \leq 0$

📋 Outline

> Presentation of the preliminary evolution law

> Application and limitations

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application Evolution law? Presentation Limitations

Conclusion

Preliminary damage evolution model Auxiliary damage variables

(a)
$$\mathbf{D} = \mathbf{1} - (\mathbf{1} + \mathbf{\Delta}_a)^{-\alpha} \iff \mathbf{\Delta}_a = (\mathbf{1} - \mathbf{D})^{-\frac{1}{\alpha}} - \mathbf{1}$$
 (Ladevèze, 1983)
(b) $\mathbf{D} = \frac{2}{\pi} \arctan(\mathbf{\Delta}_b^{\alpha}) \iff \mathbf{\Delta}_b = \left(\tan\left(\frac{\pi}{2}\mathbf{D}\right)\right)^{\frac{1}{\alpha}}$

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Beam-particle mode Measurement Reference dataset State model

Damage variable Shear modulus Harmonic part Application Evolution law? Presentation Limitations

Conclusion

Preliminary damage evolution model Auxiliary damage variables

(a)
$$\mathbf{D} = \mathbf{1} - (\mathbf{1} + \Delta_a)^{-\alpha} \iff \Delta_a = (\mathbf{1} - \mathbf{D})^{-\frac{1}{\alpha}} - \mathbf{1}$$
 (Ladevèze, 1983)
(b) $\mathbf{D} = \frac{2}{\pi} \arctan(\Delta_b^{\alpha}) \iff \Delta_b = \left(\tan\left(\frac{\pi}{2}\mathbf{D}\right)\right)^{\frac{1}{\alpha}}$

Non-standard evolution law

 $\varepsilon_{eq} = \varepsilon_{vM} + k \operatorname{tr}(\varepsilon) \quad \longleftarrow \quad C(\Delta) = C_0 + S_1 \operatorname{tr}(\Delta) + \frac{1}{2}S_2\Delta' : \Delta'$ Damage criterion $f(\varepsilon, \Delta) = \varepsilon_{eq} - C(\Delta) \leq 0$

Evolution law $\dot{\Delta} = \dot{\lambda} \mathbf{P}$ $\dot{\lambda} = \frac{\dot{\varepsilon}_{eq}}{S_1 \operatorname{tr}(\mathbf{P}) + S_2 \mathbf{P}' : \Delta'} \quad \blacksquare \quad \mathbf{P} = \langle \varepsilon \rangle_+ / \| \langle \varepsilon \rangle_+ \|$

□ Implemented using MFront (Helfer et al., 2015) in Appendix G

34/41

Fit and illustration in bitension

 D_{11}

0

0

Beam-particle mode Measureme Reference dataset

State model Damage variable Application Evolution law?

Presentation Conclusion

 D_{12}

3

3

□ Identified parameters on p. 129

5

5

 $\mathbf{4}$

4

 $\cdot 10^{-4}$

 $\cdot 10^{-4}$

Fit and illustration in bitension

□ Identified parameters on p. 129

Quasi-brittle materials

Methodology

Measurement Reference dataset

State model

Evolution law?

Conclusion

Virtual testing

5

5

Fit and illustration in tension

Quasi-brittle materials Observations Modelling

Methodology Virtual testing

Beam-particle mode

Reference dataset State model Damage variable Shear modulus

Application Evolution law?

Presentation

Limitations

Reference D_{22} 1 D_{22} Model $\mathbf{P} \propto \langle \varepsilon \rangle_{+} = \begin{bmatrix} \varepsilon_{11} & 0 \\ 0 & 0 \end{bmatrix}$ 00Solution? $\mathbf{P} \propto \langle \varepsilon \rangle_{+} + I(\mathbf{D})\mathbf{1}$ 0123

Strain ε_{11} .10⁻⁴

Evolution of the yield surface (in tension)

Consolidation is not sufficient

 $\cdot 10^{-4}$

Virtual testing Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application Evolution law? Presentation

Conclusion

Quasi-brittle materials Observations

Modelling degradation Methodology

Virtual testing

Beam-particle model Measurement Reference dataset

State model

Damage variable Shear modulus Harmonic part Application

Evolution law?

Limitations

Conclusion

1. Virtual testing

Simulate virtual specimen with the beam-particle model to constitute the dataset of effective elasticity tensors

Quasi-brittle materials Observations Modelling degradation

degradation Methodology

Virtual testing

Beam-particle mode Measurement Reference dataset

State model Damage variable Shear modulus Harmonic part Application Evolution law? Presentation Limitations

Conclusion

1. Virtual testing

Simulate virtual specimen with the beam-particle model to constitute the dataset of effective elasticity tensors

$$\begin{split} \widetilde{\mathbf{E}}(\mathbf{D}) &= 2\widetilde{\mu}(\mathbf{D})\mathbf{J} + \widetilde{\kappa}(\mathbf{D})\mathbf{1} \otimes \mathbf{1} + \frac{1}{2} \left(\widetilde{\mathbf{d}}'(\mathbf{D}) \otimes \mathbf{1} + \mathbf{1} \otimes \widetilde{\mathbf{d}}'(\mathbf{D}) \right) + \widetilde{\mathbf{H}}(\mathbf{D}) \\ \widetilde{\mu}(\mathbf{D}) &= \mu_0 - \frac{\kappa_0}{4} (\operatorname{tr} \mathbf{D}) + \frac{\kappa_0 - 2\mu_0}{4} (\mathbf{D} : \mathbf{D}) \qquad \widetilde{\mathbf{d}}'(\mathbf{D}) = -2\kappa_0 \mathbf{D}' \\ \widetilde{\kappa}(\mathbf{D}) &= \kappa_0 \left(1 - \frac{1}{2} \operatorname{tr} \mathbf{D} \right) \qquad \widetilde{\mathbf{H}}(\mathbf{D}) = h (\operatorname{tr} \mathbf{D})^4 \mathbf{D}' * \mathbf{I} \end{split}$$

2. State model

Defined the damage variable and determined the coupling $\widetilde{E}(D)$ between elasticity and damage

Quasi-brittle materials Observations Modelling degradation

degradation Methodology

Virtual testing

Beam-particle mode Measurement Reference dataset

State model Damage variable Sheár modulus Harmonic par Application Evolution law? Presentation Limitations Conclusion

1. Virtual testing

Simulate virtual specimen with the beam-particle model to constitute the dataset of effective elasticity tensors

$\widetilde{\mathbf{E}}(\mathbf{D}) = 2\widetilde{\mu}(\mathbf{D})\mathbf{J} + \widetilde{\kappa}(\mathbf{D})1 \otimes 1 + \frac{1}{2} \left(\widetilde{\mathbf{d}}'(\mathbf{D}) \otimes \right)$	$1 + 1 \otimes \widetilde{d}'(\mathbf{D}) + \widetilde{H}(\mathbf{D})$
$\widetilde{\mu}(\mathbf{D}) = \mu_0 - \frac{\kappa_0}{4} (\operatorname{tr} \mathbf{D}) + \frac{\kappa_0 - 2\mu_0}{4} (\mathbf{D} : \mathbf{D})$	$\widetilde{\mathbf{d}}'(\mathbf{D}) = -2\kappa_0 \mathbf{D}'$
$\widetilde{\kappa}(\mathbf{D}) = \kappa_0 \left(1 - \frac{1}{2} \operatorname{tr} \mathbf{D} \right)$	$\widetilde{\mathbf{H}}(\mathbf{D}) = h(\mathrm{tr}\mathbf{D})^4\mathbf{D}'$

3. Evolution law

Proposed a preliminary damage evolution model and highlight its current limitations

2. State model

Defined the damage variable and determined the coupling $\widetilde{E}(D)$ between elasticity and damage

- 🤣 Use of an auxialiary damage variable
- Damaging direction

×D

Evolution of the yield surface
Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing Beam-particle mode Measurement Reference dataset

State model
Damage variable
Shear modulus
Harmonic part
Application
Evolution law?
Presentation
Limitations
Conclusion

Perspectives

Enrich the model

Damage evolution

 $\dot{\Delta} = \begin{cases} 0 & \text{ if } f < 0, \\ \dot{\lambda} \mathbf{P} & \text{ otherwise.} \end{cases}$

> Choice of damage direction **P** =?

Other extensions

- > Non-proportional loadings
 - Criterion $f(\varepsilon, \Delta) = ?$
 - Crack-closure effects
- > 3D formulation

Can this model fit other micro-cracked materials?

- > Virtual testing
 - Another meso-scale model
- > Experiments

Structural scale

- > Non-local damage
 - (Pijaudier-Cabot & Bažant, 1987)
 - (Peerlings et al., 1996)
- Evolution should be formulated from the non-local damage driving quantity

Imp

Quasi-brittle materials Observations Modelling degradation Methodology Virtual testing

Beam-particle mode Measurement Reference dataset

State model

Shear modulus Harmonic part Application Evolution law? Presentation Limitations Conclusion

Perspectives

Improve the methodology

Tools for material behavior modelling

- > Relying on rigorous mathematical basis
- > Using sparse and interpretable data-driven methods

Quasi-brittle materials

Modelling degradation Methodology

Virtual testing

Beam-particle mode Measurement Reference dataset

State model

Shear modulus Harmonic part Application

Evolution law? Presentation

Conclusion

Thank you for your attention!

Flavien Loiseau Supervised by R. Desmorat, C. Oliver-Leblond 12 December 2023 Ph.D. Defense

References I

Antonelli, A., Desmorat, B., Kolev, B., & Desmorat, R. (2022). Distance to plane elasticity orthotropy by euler–lagrange method. *Comptes Rendus*. *Mécanique*, 350, 413–430. https://doi.org/10.5802/crmeca.122

Backus, G. (1970). A geometrical picture of anisotropic elastic tensors. *Reviews of Geophysics*, 8(3), 633–671. https://doi.org/10.1029/RG008i003p00633

Berthaud, Y. (1991). Damage measurements in concrete via an ultrasonic technique. part i experiment. Cement and Concrete Research, 21(1), 73–82. https://doi.org/10.1016/0008-8846(91)90033-E

Blinowski, A., Ostrowska-Maciejewska, J., & Rychlewski, J. (1996). Two-dimensional hooke's tensors - isotropic decomposition, effective symmetry criteria. *Archives of Mechanics*, 48(2), 325–345. https://doi.org/10.24423/aom.1345

Cormery, F., & Welemane, H. (2010). A stress-based macroscopic approach for microcracks unilateral effect. *Computational Materials Science*, 47(3), 727–738. https://doi.org/10.1016/j.commatsci.2009.10.016

References State model Damage evolution Damage criterion Auxiliary variable Damage direction

References II

 Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. https://doi.org/10.1680/geot.1979.29.1.47
 D'Addetta, G. A., Kun, F., & Ramm, E. (2002). On the application of a discrete model to the fracture process of cohesive granular materials. *Granular Matter*, 4(2), 77–90. https://doi.org/10.1007/s10035-002-0103-9

Delaplace, A. (2008). Modélisation discrète appliquée au comportement des matériaux et des structures (Mémoire d'habilitation à diriger des recherches). Ecole Normale Supérieure de Cachan.

Delaplace, A., Pijaudier-Cabot, G., & Roux, S. (1996). Progressive damage in discrete models and consequences on continuum modelling. *Journal of the Mechanics and Physics of Solids*, 44(1), 99–136. https://doi.org/10.1016/0022-5096(95)00062-3

Desmorat, B., & Desmorat, R. (2015). Tensorial polar decomposition of 2d fourth-order tensors. *Comptes Rendus Mécanique*, 343(9), 471–475. https://doi.org/10.1016/i.crme.2015.07.002

References State model Damage evolution

References III

Desmorat, B., & Desmorat, R. (2016). Second order tensorial framework for 2d medium with open and closed cracks. *European Journal of Mechanics - A/Solids*, 58, 262–277. https://doi.org/10.1016/j.euromechsol.2016.02.004

Desmorat, R., Gatuingt, F., & Ragueneau, F. (2007). Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials. *Engineering Fracture Mechanics*, 74(10), 1539–1560. https://doi.org/10.1016/j.engfracmech.2006.09.012

Desmorat, R. (2016). Anisotropic damage modeling of concrete materials. International Journal of Damage Mechanics, 25(6), 818–852. https://doi.org/10.1177/1056789515606509 Dormieux, L., & Kondo, D. (2016). Micromechanics of fracture and damage (1st ed.). Wiley. Francfort, G. A., & Marigo, J., -, (1998). Revisiting brittle fracture as an energy minimization

problem. Journal of the Mechanics and Physics of Solids, 46(8), 1319–1342. https://doi.org/10.1016/S0022-5096(98)00034-9

Grassl, P., & Jirásek, M. (2006). Damage-plastic model for concrete failure. International Journal of Solids and Structures, 43(22), 7166–7196. https://doi.org/10.1016/j.ijsolstr.2006.06.032

References State model Damage evolution Auxiliary variable Damage direction

References IV

Griffith, A. A. (1921). VI. the phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A. Containing Papers of a Mathematical or Physical Character, 221(582), 163–198, https://doi.org/10.1098/rsta.1921.0006 Halm, D., & Dragon, A. (1996). A model of anisotropic damage by mesocrack growth: unilateral effect. International Journal of Damage Mechanics, 5(4), 384–402. https://doi.org/10.1177/105678959600500403 Halm, D., & Dragon, A. (1998). An anisotropic model of damage and frictional sliding for brittle materials. European Journal of Mechanics - A/Solids, 17(3), 439–460. https://doi.org/10.1016/S0997-7538(98)80054-5 Helfer, T., Michel, B., Proix, J.-M., Salvo, M., Sercombe, J., & Casella, M. (2015). Introducing the open-source mfront code generator: Application to mechanical behaviours and material knowledge management within the PLEIADES fuel element modelling platform. Computers & Mathematics with Applications, 70(5), 994–1023. https://doi.org/10.1016/j.camwa.2015.06.027

References State model Damage evolution Damage criterion Auxiliary variable Damage direction Svolution yield surface

References V

Herrmann, H. J., & Roux, S. (Eds.), (1990). Statistical models for the fracture of disordered media. North-Holland. https://doi.org/10.1016/B978-0-444-88551-7.50001-X **Hrennikoff, A. (1941).** Solution of problems of elasticity by the framework method. Journal of Applied Mechanics, 8(4), A169–A175, https://doi.org/10.1115/1.4009129 Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, 24(3), 361–364. https://doi.org/10.1115/1.4011547 Kachanov, L. M. (1958). On creep rupture time. Izv. Acad. Nauk SSSR, Otd. Techn. Nauk, 8, 26–31. Kachanov, M. (1992). Effective elastic properties of cracked solids: Critical review of some basic concepts. Applied Mechanics Reviews, 45(8), 304–335. https://doi.org/10.1115/1.3119761 Kraicinovic, D. (1996). Damage mechanics. Elsevier. Ladevèze, P. (1983). Sur une théorie de l'endommagement anisotrope (Rapport Interne No. 34). I MT Cachan.

References State model Damage evolution Damage criterion Auxiliary variable Damage direction Evolution yield surface

References VI

Lehne, J., & Preston, F. (2018). Making concrete change, innovation in low-carbon cement and concrete. (Chatham House Report). Energy Enivronment and Resources Department: London, UK.

Lemaitre, J. (1971). Evaluation of dissipation and damage in metals submitted to dynamic loading (Technical).

Lemaitre, J. (1992). A course on damage mechanics. Springer-Verlag. https://doi.org/10.1007/978-3-662-02761-5

Lemaitre, J., & Desmorat, R. (2005). Engineering damage mechanics: Ductile, creep, fatigue and brittle failures. Springer-Verlag. https://doi.org/10.1007/b138882

Loiseau, F., Oliver-Leblond, C., Verbeke, T., & Desmorat, R. (2023). Anisotropic damage state modeling based on harmonic decomposition and discrete simulation of fracture. *Engineering Fracture Mechanics*, 293, 109669. https://doi.org/10.1016/j.engfracmech.2023.109669

References State model Damage evolution Damage criterion Auxiliary variable Damage direction Evolution yield surface

References VII

 Lubliner, J., Oliver, J., Oller, S., & Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 299–326. https://doi.org/10.1016/0020-7683(89)90050-4
 Mac, M. J., Yio, M. H. N., Desbois, G., Casanova, I., Wong, H. S., & Buenfeld, N. R. (2021). 3d imaging techniques for characterising microcracks in cement-based materials. *Cement* and Concrete Research, 140, 106309. https://doi.org/10.1016/j.cemconres.2020.106309

Mazars, J. (1984). Application de la mécanique de l'endommagement au comportement non-linéaire et à la rupture du béton de structure (Thèse de Doctorat d'État ès Sciences Physiques). Université Pierre et Marie Curie - Paris VI - Laboratoire de Mécanique et Technologie.
 Murakami, S., & Ohno, N. (1978). A constitutive equation of creep damage in pollicristalline metals. In *IUTAM colloquium euromech*.

Murakami, S. (2012). Continuum damage mechanics (Vol. 185). Springer Netherlands. https://doi.org/10.1007/978-94-007-2666-6

References VIII

Oliver-Leblond. C. (2019). Discontinuous crack growth and toughening mechanisms in concrete: A numerical study based on the beam-particle approach. Engineering Fracture Mechanics. 207, 1–22. https://doi.org/10.1016/j.engfracmech.2018.11.050 Oliver-Leblond, C., Desmorat, R., & Kolev, B. (2021). Continuous anisotropic damage as a twin modelling of discrete bi-dimensional fracture. European Journal of Mechanics - A/Solids, 89, 104285. https://doi.org/10.1016/j.euromechsol.2021.104285 Peerlings, R. H. J., De Borst, R., Brekelmans, W. a. M., & De Vree, J. H. P. (1996). Gradient enhanced damage for quasi-brittle materials. International Journal for Numerical Methods in Engineering, 39(19), 3391-3403. https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO:2-D Pijaudier-Cabot, G., & Bažant, Z. P. (1987). Nonlocal damage theory. Journal of Engineering

Mechanics, 113(10), 1512–1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)

References IX

Ponte Castañeda, P., & Willis, J. R. (1995). The effect of spatial distribution on the effective behavior of composite materials and cracked media. Journal of the Mechanics and Physics of Solids, 43(12), 1919–1951. https://doi.org/10.1016/0022-5096(95)00058-Q Rabotnov, Y. N. (1969). Creep problems in structural members (F. A. Leckie, Ed.). North-Holland Publishing Company, Amsterdam, https://doi.org/10.1115/1.3408479 Rice, J. R. (1968). A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 35(2), 379–386. https://doi.org/10.1115/1.3601206 Richard, B., Ragueneau, F., Cremona, C., & Adelaide, L. (2010). Isotropic continuum damage mechanics for concrete under cyclic loading: Stiffness recovery, inelastic strains and frictional sliding. Engineering Fracture Mechanics, 77(8), 1203–1223. https://doi.org/10.1016/j.engfracmech.2010.02.010 **Rinaldi, A. (2013)**. Bottom-up modeling of damage in heterogeneous quasi-brittle solids.

Continuum Mechanics and Thermodynamics, 25(2), 359–373. https://doi.org/10.1007/s00161-012-0265-6

References State model Damage evolution Damage direction Auxiliary variable Damage direction Evolution yield surface

References X

Rinaldi, A., & Lai, Y.-C. (2007). Statistical damage theory of 2d lattices: Energetics and physical foundations of damage parameter. *International Journal of Plasticity*, *23*(10), 1796–1825. https://doi.org/10.1016/j.ijplas.2007.03.005

Terrien, M. (1980). Emission acoustique et comportement mécanique post-critique d'un béton sollicité en traction. Bulletin de liaison des laboratoires des ponts et chaussees, 1980(105), 65–71.

Vakulenko, A. A., & Kachanov, M. (1971). Continuum theory of medium with cracks. *Mekhanika* tverdogo tela, 4, 159–166.

Vannucci, P. (2005). Plane anisotropy by the polar method*. *Meccanica*, 40(4), 437–454. https://doi.org/10.1007/s11012-005-2132-z

Vassaux, M., Oliver-Leblond, C., Richard, B., & Ragueneau, F. (2016). Beam-particle approach to model cracking and energy dissipation in concrete: Identification strategy and validation. *Cement and Concrete Composites*, 70, 1–14. https://doi.org/10.1016/j.cemconcomp.2016.03.011

References XI

Vianello, M. (1997). An integrity basis for plane elasticity tensors. *Archives of Mechanics*, 49(1), 197–208. https://doi.org/10.24423/aom.1401

Voyiadjis, G. Z., Taqieddin, Z. N., & Kattan, P. I. (2008). Anisotropic damage-plasticity model for concrete. International Journal of Plasticity, 24(10), 1946–1965. https://doi.org/10.1016/j.ijplas.2008.04.002

Voyiadjis, G. Z., Zhou, Y., & Kattan, P. I. (2022). A new anisotropic elasto-plastic-damage model for quasi-brittle materials using strain energy equivalence. *Mechanics of Materials*, 165, 104163. https://doi.org/10.1016/j.mechmat.2021.104163

Wriggers, P., & Moftah, S. O. (2006). Mesoscale models for concrete: Homogenisation and damage behaviour. *Finite Elements in Analysis and Design*, 42(7), 623–636.

https://doi.org/10.1016/j.finel.2005.11.008

Polynomial of invariants \rightarrow linear relationship

The polynomial can be rewritten as a linear relationship

$$p(\mathbf{D}) = \begin{bmatrix} I_1 \mathbf{D} & I_2 \mathbf{D}' & \dots & I_1 \mathbf{D}^{n_1} I_2 \mathbf{D}'^{n_2} \end{bmatrix} \begin{bmatrix} c_{1,0} \\ c_{0,1} \\ \vdots \\ c_{n_1,n_2} \end{bmatrix}.$$

Remark – Numerous parameters

New question – How to fit the model?

References State model Damage evolution Damage citerion Auxiliary variable Damage direction Evolution yield surface

Regression

Notations

$$\mathbf{c}^* = \arg\min_{\mathbf{c} \in \mathbb{R}^{N_c}} \left(\frac{1}{N} \| \mathbf{y} - \mathbf{X} \cdot \mathbf{c} \|_2^2 \right)$$

Sparse regression (LASSO)

$$\mathbf{c}^* = \arg\min_{\mathbf{c}\in\mathbb{R}^{N_c}} \left(\frac{1}{N} \|\mathbf{y} - \mathbf{X}\cdot\mathbf{c}\|_2^2 + \alpha \|\mathbf{c}\|_1\right)$$

Features

- Penalization of nonzero parameters
- Linear convex optimization problem, easy linear constraints
- Arbitrary penalization coefficient

Choosing the penalization coefficient $(n + m \le 6)$

References State model Damage evolution Damage criterion Auxiliary variable Damage direction Evolution yield surface

Perspective: Generic model ?

Collaboration with A. A. Basmaji (work in progress)

References State model Damage evolution Damage criterion Auxiliary variable Damage direction Evolution yield surface

Procedure

- > Choose a direction θ
- > Apply a loading (elastic)

 $\varepsilon_{\rm imp} = \|\varepsilon_{\rm imp}\| \begin{bmatrix} \cos(\theta) & 0\\ 0 & \sin(\theta) \end{bmatrix}$

 Get loading factor *α* such that the 1st beam breaks

 $\alpha = \frac{1}{f_{b^*}}, \quad f_{b^*}$: beam failure crit.

> Calculate the yield strain $\varepsilon_y = \alpha \varepsilon_{imp}$

Requires 1 elastic simulation/point

Procedure

- > Choose a direction θ
- > Apply a loading (elastic)

 $\varepsilon_{\rm imp} = \|\varepsilon_{\rm imp}\| \begin{bmatrix} \cos(\theta) & 0\\ 0 & \sin(\theta) \end{bmatrix}$

- Get loading factor *α* such that the 1st beam breaks
 - $\alpha = \frac{1}{f_{b^*}}, \quad f_{b^*}$: beam failure crit.
- > Calculate the yield strain $\varepsilon_y = \alpha \varepsilon_{imp}$

Requires 1 elastic simulation/point

Procedure

- > Choose a direction θ
- > Apply a loading (elastic)

 $\varepsilon_{\rm imp} = \|\varepsilon_{\rm imp}\| \begin{bmatrix} \cos(\theta) & 0 \\ 0 & \sin(\theta) \end{bmatrix}$

 Get loading factor *α* such that the 1st beam breaks

 $\alpha = \frac{1}{f_{b^*}}, \quad f_{b^*}$: beam failure crit.

> Calculate the yield strain $\varepsilon_y = \alpha \varepsilon_{imp}$

Requires 1 elastic simulation/point

Procedure

- > Choose a direction θ
- > Apply a loading (elastic)

 $\varepsilon_{\rm imp} = \|\varepsilon_{\rm imp}\| \begin{bmatrix} \cos(\theta) & 0\\ 0 & \sin(\theta) \end{bmatrix}$

 Get loading factor *α* such that the 1st beam breaks

 $\alpha = \frac{1}{f_{b^*}}, \quad f_{b^*}$: beam failure crit.

> Calculate the yield strain $\varepsilon_y = \alpha \varepsilon_{imp}$

Requires 1 elastic simulation/point

Initial damage criterion (D = 0)

Application

8 meso-structures

Initial damage criterion (D = 0)

Application

8 meso-structures

References State model Damage evolution Damage citerion Auxiliary variable Damage direction Evolution yield surface

Initial damage criterion (D = 0)

Application

8 meso-structures

Linear regression

Damage starts when

 $\varepsilon_{\rm vM} = -k \operatorname{tr}(\varepsilon) + C_0$

where k = 0.530, $C_0 = 5.93 \times 10^{-5}$. This criterion can be written

$$f(\varepsilon, \mathbf{0}) = \varepsilon_{\rm vM} + k \operatorname{tr}(\varepsilon) - C_0 = 0.$$

References State model Damage evolution Damage citerion Ausiliary variable Damage direction Evolution yield surface

Initial damage criterion (D = 0)

Application

8 meso-structures

Linear regression

Damage starts when

 $\varepsilon_{\rm vM} = -k \operatorname{tr}(\varepsilon) + C_0$

where k = 0.530, $C_0 = 5.93 \times 10^{-5}$. This criterion can be written

$$f(\varepsilon, \mathbf{0}) = \varepsilon_{\rm vM} + k \operatorname{tr}(\varepsilon) - C_0 = 0.$$

References State mode Damagé evolution

Summary of the (partial) damage evolution model

Initial damage criterion

 $f(\varepsilon, \mathbf{D}) = \varepsilon_{eq} - C(\mathbf{D})$

Non-standard damage evolution

 $\dot{\mathbf{D}} = \dot{\lambda}_{\mathbf{D}} \mathbf{P}_{\mathbf{D}}$

where

where > $\varepsilon_{\rm eq} = \varepsilon_{\rm vM} + k \operatorname{tr}(\varepsilon)$: equivalent strain

- > $\dot{\lambda}_{\rm D}$: damage multiplier
- > **P**_D: damage direction (normalized)

Link between consolidation and damage evolution

 $\dot{\lambda}_{\mathbf{D}}$ verifies the Kuhn-Tucker conditions

> $C(\mathbf{0}) = C_0$: consolidation (initial)

$$f \leq 0, \ \dot{\lambda}_{\mathbf{D}} \geq 0, \ f \dot{\lambda}_{\mathbf{D}} = 0 \implies \dot{\lambda}_{\mathbf{D}} = \frac{\dot{\varepsilon}_{eq}}{\mathbf{P}_{\mathbf{D}} : \frac{\partial C}{\partial \mathbf{D}}}$$

Remark

Ease bounding damage by making a change of variable

References State model Damage evolution Damage criterian Auxiliary variable Damage direction Evolution yielt surface

Bounding damage

Reference Mattielo, Ladeveze, + log rate of damage

Idea

Definition of an auxiliary variable Δ such that $\dot{\Delta} = \mathscr{G}(\mathbf{D}, \dot{\mathbf{D}})$.

In practice, we tried

(a)
$$\mathbf{D} = \mathbf{1} - (\mathbf{1} + \mathbf{\Delta}_a)^{-\alpha} \iff \mathbf{\Delta}_a = (\mathbf{1} - \mathbf{D})^{-\frac{1}{\alpha}} - \mathbf{1}$$

(b) $\mathbf{D} = \frac{2}{\pi} \arctan(\mathbf{\Delta}_b^{\alpha}) \iff \mathbf{\Delta}_b = \left(\tan\left(\frac{\pi}{2}\mathbf{D}\right)\right)^{\frac{1}{\alpha}}$

where α is the damage exponent.

Remark

Evolution of the auxiliary variable is also easier to describe (C Pp. 127–128)

Function of 2nd order tensor applied on eigenvalues.

Illustration of the change of variable

References State model Damage evolution Damage criterion Auxiliary variable Damage direction Evolution yield surface

Summary of the (partial) damage evolution model

Auxiliary damage variables

(a)
$$\mathbf{D} = \mathbf{1} - (\mathbf{1} + \Delta_a)^{-\alpha} \iff \Delta_a = (\mathbf{1} - \mathbf{D})^{-\frac{1}{\alpha}} - \mathbf{1}$$

(b) $\mathbf{D} = \frac{2}{\pi} \arctan(\Delta_b^{\alpha}) \iff \Delta_b = \left(\tan\left(\frac{\pi}{2}\mathbf{D}\right)\right)^{\frac{1}{\alpha}}$

Damage criterion

Non-standard damage evolution

 $\dot{\mathbf{A}} = \dot{\mathbf{A}}\mathbf{P}$

 $f(\boldsymbol{\varepsilon},\boldsymbol{\Delta}) = \boldsymbol{\varepsilon}_{\rm eq} - C(\boldsymbol{\Delta})$

> $\varepsilon_{eq} = \varepsilon_{vM} + k \operatorname{tr}(\varepsilon)$: equivalent strain > $C(\mathbf{0}) = C_0$: consolidation (initial)

where

- where
 - > $\dot{\lambda}$: auxiliary damage multiplier,
 - P: auxiliary damage direction (normalized).

Auxiliary damage multiplier from the consolidation function $\dot{\lambda} = \dot{\varepsilon}_{eq}/(\mathbf{P}:\frac{\partial C}{\partial \Delta})$ from the Kuhn-Tucker condition 24

References State model Damagé evolution Damage criterià uviliary variabl Damage direction Evolution viel

Damaging direction

Principal damages in the dataset

Observations

- A Unreachable due to damage bi-axiality
- **B** Reachable with other multi-axial loadings

Damaging direction

Bi-axiality of damage growth

Evolution of the yield surface (in bitension)

Consolidation is not sufficient

 $\cdot 10^{-4}$

References State model Damage evolution Damage citerion Auxiliary variable Damage direction Evolution yield surface